ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck Early Results XVIII: The power spectrum of cosmic infrared background anisotropies

298   0   0.0 ( 0 )
 نشر من قبل Guilaine Lagache
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Planck maps of six regions of low Galactic dust emission with a total area of about 140 square degrees, we determine the angular power spectra of cosmic infrared background (CIB) anisotropies from multipole l = 200 to l = 2000 at 217, 353, 545 and 857 GHz. We use 21-cm observations of HI as a tracer of thermal dust emission to reduce the already low level of Galactic dust emission and use the 143 GHz Planck maps in these fields to clean out cosmic microwave background anisotropies. Both of these cleaning processes are necessary to avoid significant contamination of the CIB signal. We measure correlated CIB structure across frequencies. As expected, the correlation decreases with increasing frequency separation, because the contribution of high-redshift galaxies to CIB anisotropies increases with wavelengths. We find no significant difference between the frequency spectrum of the CIB anisotropies and the CIB mean, with Delta I/I=15% from 217 to 857 GHz. In terms of clustering properties, the Planck data alone rule out the linear scale- and redshift-independent bias model. Non-linear corrections are significant. Consequently, we develop an alternative model that couples a dusty galaxy, parametric evolution model with a simple halo-model approach. It provides an excellent fit to the measured anisotropy angular power spectra and suggests that a different halo occupation distribution is required at each frequency, which is consistent with our expectation that each frequency is dominated by contributions from different redshifts. In our best-fit model, half of the anisotropy power at l=2000 comes from redshifts z<0.8 at 857 GHz and z<1.5 at 545 GHz, while about 90% come from redshifts z>2 at 353 and 217 GHz, respectively.



قيم البحث

اقرأ أيضاً

Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-calle d generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above $b = pm 20{deg}$. We find that the dust temperature is $T = (19.4 pm 1.3)$ K and the dust spectral index is $beta = 1.6 pm 0.1$ averaged over the whole sky, while $T = (19.4 pm 1.5)$ K and $beta = 1.6 pm 0.2$ on 21 % of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60 % of the sky at Galactic latitudes $|b| > 20{deg}$. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.
The multi-frequency capability of the Planck satellite provides information both on the integrated history of star formation (via the cosmic infrared background, or CIB) and on the distribution of dark matter (via the lensing effect on the cosmic mic rowave background, or CMB). The conjunction of these two unique probes allows us to measure directly the connection between dark and luminous matter in the high redshift (1 < z <3) Universe. We use a three-point statistic optimized to detect the correlation between these two tracers. Following a thorough discussion of possible contaminants and a suite of consistency tests, using lens reconstructions at 100, 143 and 217 GHz and CIB measurements at 100-857 GHz, we report the first detection of the correlation between the CIB and CMB lensing. The well matched redshift distribution of these two signals leads to a detection significance with a peak value of 42 sigma at 545 GHz and a correlation as high as 80% across these two tracers. Our full set of multi-frequency measurements (both CIB auto- and CIB-lensing cross-spectra) are consistent with a simple halo-based model, with a characteristic mass scale for the halos hosting CIB sources of log_{10}(M/M_sun) = 10.5 pm 0.6. Leveraging the frequency dependence of our signal, we isolate the high redshift contribution to the CIB, and constrain the star formation rate (SFR) density at z>1. We measure directly the SFR density with around 2 sigma significance for three redshift bins between z=1 and 7, thus opening a new window into the study of the formation of stars at early times.
We use analytic computations to predict the power spectrum as well as the bispectrum of Cosmic Infrared Background (CIB) anisotropies. Our approach is based on the halo model and takes into account the mean luminosity-mass relation. The model is used to forecast the possibility to simultaneously constrain cosmological, CIB and halo occupation distribution (HOD) parameters in the presence of foregrounds. For the analysis we use wavelengths in eight frequency channels between 200 and 900$;mathrm{GHz}$ with survey specifications given by Planck and LiteBird. We explore the sensitivity to the model parameters up to multipoles of $ell =1000$ using auto- and cross-correlations between the different frequency bands. With this setting, cosmological, HOD and CIB parameters can be constrained to a few percent. Galactic dust is modeled by a power law and the shot noise contribution as a frequency dependent amplitude which are marginalized over. We find that dust residuals in the CIB maps only marginally influence constraints on standard cosmological parameters. Furthermore, the bispectrum yields tighter constraints (by a factor four in $1sigma$ errors) on almost all model parameters while the degeneracy directions are very similar to the ones of the power spectrum. The increase in sensitivity is most pronounced for the sum of the neutrino masses. Due to the similarity of degeneracies a combination of both analysis is not needed for most parameters. This, however, might be due to the simplified bias description generally adopted in such halo model approaches.
Full-sky CMB maps from the 2015 Planck release allow us to detect departures from global isotropy on the largest scales. We present the first searches using CMB polarization for correlations induced by a non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance $chi_{rec}$). We specialize to flat spaces with toroidal and slab topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology at a scale below the diameter of the last scattering surface. The limits on the radius $R_i$ of the largest sphere inscribed in the topological domain (at log-likelihood-ratio $Deltaln{L}>-5$ relative to a simply-connected flat Planck best-fit model) are $R_i>0.97chi_{rec}$ for the cubic torus and $R_i>0.56chi_{rec}$ for the slab. The limit for the cubic torus from the matched-circles search is numerically equivalent, $R_i>0.97chi_{rec}$ (99% CL) from polarisation data alone. We also perform a Bayesian search for a Bianchi VII$_h$ geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck temperature data favour the inclusion of a Bianchi component. However, the cosmological parameters generating this pattern are in strong disagreement with those found from CMB anisotropy data alone. Fitting the induced polarization pattern for this model to Planck data requires an amplitude of $-0.1pm0.04$ compared to +1 if the model were to be correct. In the physical setting where the Bianchi parameters are fit simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VII$_h$ cosmology and constrain the vorticity of such models to $(omega/H)_0<7.6times10^{-10}$ (95% CL). [Abridged]
We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB and the mass of dark-matter halos hos ting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIBxCMB lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured one up to at least z=4. The obscured and unobscured star formation rate densities are compatible at $1sigma$ at z=5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from $sim$0.8 at z$=$0 to $sim$8 at z$=$4. At 2$<$z$<$4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimeter galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(M$_h$/M$_{odot}$)=12.77$_{-0.125}^{+0.128}$ for the mass of the typical dark matter halo contributing to the CIB at z=2. Finally, we also computed using a Fisher matrix analysis how the uncertainties on the cosmological parameters affect the recovered CIB model parameters and find that the effect is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا