ﻻ يوجد ملخص باللغة العربية
We have realized real-time steering of the directed transport in a Brownian motor based on cold atoms in optical lattices, and demonstrate drifts along pre-designed paths. The transport is induced by spatiotemporal asymmetries in the system, where we can control the spatial part, and we show that the response to changes in asymmetry is very fast. In addition to the directional steering, a real-time control of the magnitude of the average drift velocity and an on/off switching of the motor are also demonstrated. We use a non-invasive real-time detection of the transport, enabling a feedback control of the system.
Directed paths have been used extensively in the scientific literature as a model of a linear polymer. Such paths models in particular the conformational entropy of a linear polymer and the effects it has on the free energy. These directed models are simplifi
The rectification of noise into directed movement or useful energy is utilized by many different systems. The peculiar nature of the energy source and conceptual differences between such Brownian motor systems makes a characterization of the performa
A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we dete
We present here a detailed study of the behaviour of a three dimensional Brownian motor based on cold atoms in a double optical lattice [P. Sjolund et al., Phys. Rev. Lett. 96, 190602 (2006)]. This includes both experiments and numerical simulations
The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From B