ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized reflected light from the exoplanet HD189733b: First multicolor observations and confirmation of detection

92   0   0.0 ( 0 )
 نشر من قبل Svetlana Berdyugina
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report first multicolor polarimetric measurements (UBV bands) for the hot Jupiters HD189733b and confirm our previously reported detection of polarization in the B band (Berdyugina et al. 2008). The wavelength dependence of polarization indicates the dominance of Rayleigh scattering with a peak in the blue B and U bands of ~10^-4+/-10^-5 and at least a factor of two lower signal in the V band. The Rayleigh-like wavelength dependence, detected also in the transmitted light during transits, implies a rapid decrease of the polarization signal toward longer wavelengths. Therefore, the nondetection by Wiktorowicz (2009), based on a measurement integrated within a broad passband covering the V band and partly B and R bands, is inconclusive and consistent with our detection in B. We discuss possible sources of the polarization and demonstrate that effects of incomplete cancellation of stellar limb polarization due to starspots or tidal perturbations are negligible as compared to scattering polarization in the planetary atmosphere. We compare the observations with a Rayleigh-Lambert model and determine effective radii and geometrical albedos for different wavelengths. We find a close similarity of the wavelength dependent geometrical albedo with that of the Neptune atmosphere, which is known to be strongly influenced by Rayleigh and Raman scattering. Our result establishes polarimetry as a reliable means for directly studying exoplanetary atmospheres.

قيم البحث

اقرأ أيضاً

RefPlanets is a guaranteed time observation (GTO) programme that uses the Zurich IMaging POLarimeter (ZIMPOL) of SPHERE/VLT for a blind search for exoplanets in wavelengths from 600-900 nm. The goals of this study are the characterization of the unpr ecedented high polarimetic contrast and polarimetric precision capabilities of ZIMPOL for bright targets, the search for polarized reflected light around some of the closest bright stars to the Sun and potentially the direct detection of an evolved cold exoplanet for the first time. For our observations of Alpha Cen A and B, Sirius A, Altair, Eps Eri and Tau Ceti we used the polarimetric differential imaging (PDI) mode of ZIMPOL which removes the speckle noise down to the photon noise limit for angular separations >0.6. We describe some of the instrumental effects that dominate the noise for smaller separations and explain how to remove these additional noise effects in post-processing. We then combine PDI with angular differential imaging (ADI) as a final layer of post-processing to further improve the contrast limits of our data at these separations. For good observing conditions we achieve polarimetric contrast limits of 15.0-16.3 mag at the effective inner working angle of about 0.13, 16.3-18.3 mag at 0.5 and 18.8-20.4 mag at 1.5. The contrast limits closer in (<0.6) depend significantly on the observing conditions, while in the photon noise dominated regime (>0.6), the limits mainly depend on the brightness of the star and the total integration time. We compare our results with contrast limits from other surveys and review the exoplanet detection limits obtained with different detection methods. For all our targets we achieve unprecedented contrast limits. Despite the high polarimetric contrasts we are not able to find any additional companions or extended polarized light sources in the data that has been taken so far.
We present a new method to assess the properties of transiting planet candidates by multicolor photometry. By analyzing multicolor transit/eclipse light curves and apparent magnitudes of the target in parallel, this method attempts to identify the na ture of the system and provide a quantitative constraint on the properties of unresolved companion(s). We demonstrate our method by observing the six systems hosting candidate transiting planets, identified by the K2 mission (EPIC 206036749, EPIC 206500801, EPIC 210513446, EPIC 211800191, EPIC 220621087, and EPIC 220696233). Applying our analysis code to the six targets, we find that EPIC 206036749, EPIC 210513446, and EPIC 211800191 are likely to be triple-star systems including eclipsing binaries, and EPIC 220696233 is likely a planetary system, albeit further observations are required to confirm the nature. Additionally, we confirm that the systematic errors in the derived system parameters arising from adopting specific isochrone models and observing instruments (passbands) are relatively small. While this approach alone is not powerful enough to validate or refute planet candidates, the technique allows us to constrain the properties of resolved/unresolved companions, and prioritize the planet candidates for further follow-up observations (e.g., radial-velocity measurements).
For terrestrial exoplanets with thin atmospheres or no atmospheres, the surface contributes light to the reflected light signal of the planet. Measurement of the variety of disk-integrated brightnesses of bodies in the Solar System and the variation with illumination and wavelength is essential for both planning imaging observations of directly imaged exoplanets and interpreting the eventual datasets. Here we measure the change in brightness of the Galilean satellites as a function of planetocentric longitude, illumination phase angle, and wavelength. The data span a range of wavelengths from 400-950nm and predominantly phase angles from 0-25 degrees, with some constraining observations near 60-140 degrees. Despite the similarity in size and density between the moons, surface inhomogeneities result in significant changes in the disk-integrated reflectivity with planetocentric longitude and phase angle. We find that these changes are sufficient to determine the rotational periods of the moon. We also find that at low phase angles the surface can produce reflectivity variations of 8-36% and the limited high phase angle observations suggest variations will have proportionally larger amplitudes at higher phase angles. Additionally, all the Galilean satellites are darker than predicted by an idealized Lambertian model at the phases most likely to be observed by direct-imaging missions. If Earth-size exoplanets have surfaces similar to that of the Galilean moons, we find that future direct imaging missions will need to achieve precisions of less than 0.1,ppb. Should the necessary precision be achieved, future exoplanet observations could exploit similar observation schemes to deduce surface variations, determine rotation periods, and potentially infer surface composition.
Planets in highly eccentric orbits form a class of objects not seen within our Solar System. The most extreme case known amongst these objects is the planet orbiting HD~20782, with an orbital period of 597~days and an eccentricity of 0.96. Here we pr esent new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS). We obtained CHIRON spectra to perform an independent estimation of the fundamental stellar parameters. New radial velocities from AAT and PARAS observations during periastron passage greatly improve our knowledge of the eccentric nature of the orbit. The combined analysis of our Keplerian orbital and Hipparcos astrometry show that the inclination of the planetary orbit is $> 1.22degr$, ruling out stellar masses for the companion. Our long-term robotic photometry show that the star is extremely stable over long timescales. Photometric monitoring of the star during predicted transit and periastron times using MOST rule out a transit of the planet and reveal evidence of phase variations during periastron. These possible photometric phase variations may be caused by reflected light from the planets atmosphere and the dramatic change in star--planet separation surrounding the periastron passage.
The ESPRI project relies on the astrometric capabilities offered by the PRIMA facility of the Very Large Telescope Interferometer for the discovery and study of planetary systems. Our survey consists of obtaining high-precision astrometry for a large sample of stars over several years and to detect their barycentric motions due to orbiting planets. We present the operation principle, the instruments implementation, and the results of a first series of test observations. A comprehensive overview of the instrument infrastructure is given and the observation strategy for dual-field relative astrometry is presented. The differential delay lines, a key component of the PRIMA facility which was delivered by the ESPRI consortium, are described and their performance within the facility is discussed. Observations of bright visual binaries are used to test the observation procedures and to establish the instruments astrometric precision and accuracy. The data reduction strategy for astrometry and the necessary corrections to the raw data are presented. Adaptive optics observations with NACO are used as an independent verification of PRIMA astrometric observations. The PRIMA facility was used to carry out tests of astrometric observations. The astrometric performance in terms of precision is limited by the atmospheric turbulence at a level close to the theoretical expectations and a precision of 30 micro-arcseconds was achieved. In contrast, the astrometric accuracy is insufficient for the goals of the ESPRI project and is currently limited by systematic errors that originate in the part of the interferometer beamtrain which is not monitored by the internal metrology system. Our observations led to the definition of corrective actions required to make the facility ready for carrying out the ESPRI search for extrasolar planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا