ﻻ يوجد ملخص باللغة العربية
The Dirac-like electronic structure can host a large number of competing orders in the form of mass terms. In particular, two different order parameters can be said to be dual to each other, when a static defect in one of them traps a quantum number (or charge) of the other. We discuss that such complementary nature of the pair of the order parameters shows up in their correlation functions and dynamical properties when a quantum phase transition is driven by fluctuations of the one of the order parameters. Approaching the transition from the disordered (paramagnetic) side, the order parameter correlation function at the critical point is reduced, while such fluctuations enhance the correlation of the dual order parameter. Such complementary behaviors in the correlation function can be used to diagnose the nature of quantum fluctuations that is the driving force of the quantum phase transition.
A number of examples have demonstrated the failure of the Landau-Ginzburg-Wilson(LGW) paradigm in describing the competing phases and phase transitions of two dimensional quantum magnets. In this paper we argue that such magnets possess field theoret
We use the half-filled zeroth Landau level in graphene as a regularization scheme to study the physics of the SO(5) non-linear sigma model subject to a Wess-Zumino-Witten topological term in 2+1 dimensions. As shown by Ippoliti et al. [PRB 98, 235108
The physics of the triangular lattice Hubbard model exhibits a rich phenomenology, ranging from a metal-insulator transition, intriguing thermodynamic behavior, and a putative spin liquid phase at intermediate coupling, ultimately becoming a magnetic
By using a combination of several non-perturbative techniques -- a one-dimensional field theoretical approach together with numerical simulations using density matrix renormalization group -- we present an extensive study of the phase diagram of the
We study quantum phase transitions between competing orders in one-dimensional spin systems. We focus on systems that can be mapped to a dual-field double sine-Gordon model as a bosonized effective field theory. This model contains two pinning potent