ﻻ يوجد ملخص باللغة العربية
We demonstrate through exact solutions that a spin bath leads to stronger (faster) dephasing of a qubit than a bosonic bath with identical bath-coupling spectrum. This difference is due to the spin-bath dressing by the coupling. Consequently, the quantum statistics of the bath strongly affects the pulse sequences required to dynamically decouple the qubit from its bath.
We put forth, theoretically and experimentally, the possibility of drastically cooling down (purifying) thermal ensembles (baths) of solid-state spins via a sequence of projective measurements of a probe spin that couples to the bath in an arbitrary
We report the first observation of the Quantum Zeno and Anti-Zeno effects in an unstable system. Cold sodium atoms are trapped in a far-detuned standing wave of light that is accelerated for a controlled duration. For a large acceleration the atoms c
The effect of the anti-rotating terms on the short-time evolution and the quantum Zeno (QZE) and anti-Zeno (AQZE) effects is studied for a two-level system coupled to a bosonic environment. A unitary transformation and perturbation theory are used to
We experimentally demonstrate, for the first time, noise diagnostics by repeated quantum measurements. Specifically, we establish the ability of a single photon, subjected to random polarisation noise, to diagnose non-Markovian temporal correlations
Projective measurements are an essential element of quantum mechanics. In most cases, they cause an irreversible change of the quantum system on which they act. However, measurements can also be used to stabilize quantum states from decay processes,