ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas temperature profiles in galaxy clusters with Swift XRT: observations and capabilities to map near R200

48   0   0.0 ( 0 )
 نشر من قبل Alberto Moretti
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.Moretti




اسأل ChatGPT حول البحث

We investigate the possibility of using the X-ray telescope (XRT) on board the Swift satellite to improve the current accuracy of the ICM temperature measurements in the region close to the virial radius of nearby clusters. We present the spectral analysis of the Swift XRT observations of 6 galaxy clusters and their temperature profiles in the regions within 0.2-0.6 r200. Four of them are nearby famous and very well studied objects (Coma, Abell 1795, Abell 2029 and PKS0745-19). The remaining two, SWJ1557+35 and SWJ0847+13, at redshift z=0.16 and z=0.36, were serendipitously observed by Swift-XRT. We accurately quantify the temperature uncertainties, with particular focus on the impact of the background scatter (both instrumental and cosmic). We extrapolate these results and simulate a deep observation of the external region of Abell 1795 which is assumed here as a case study. In particular we calculate the expected uncertainties in the temperature measurement as far as r200. We find that, with a fairly deep observation (300 ks), the Swift XRT would be able to measure the ICM temperature profiles in the external regions as far as the virial radius, significantly improving the best accuracy among the previous measurements. This can be achieved thanks to the unprecedented combination of good PSF over the full field of view and very accurate control of the instrumental background. Somehow unexpectedly we conclude that, among currently operating telescope, the Swift-XRT is the only potentially able to improve the current accuracy in plasma temperature measurement at the edges of the cluster potential. This will be true until a newgeneration of low-background and large field of view telescopes, aimed to the study of galaxy clusters, will operate. These observations would be of great importance in developing the observing strategy for suchmissions.

قيم البحث

اقرأ أيضاً

We consider the dynamics in and near galaxy clusters. Gas, dark matter and galaxies are presently falling into the clusters between approximately 1 and 5 virial radii. At very large distances, beyond 10 virial radii, all matter is following the Hubbl e flow, and inside the virial radius the matter particles have on average zero radial velocity. The cosmological parameters are imprinted on the infall profile of the gas, however, no method exists, which allows a measurement of it. We consider the results of two cosmological simulations (using the numerical codes RAMSES and Gadget) and find that the gas and dark matter radial velocities are very similar. We derive the relevant dynamical equations, in particular the generalized hydrostatic equilibrium equation, including both the expansion of the Universe and the cosmological background. This generalized gas equation is the main new contribution of this paper. We combine these generalized equations with the results of the numerical simulations to estimate the contribution to the measured cluster masses from the radial velocity: inside the virial radius it is negligible, and inside two virial radii the effect is below 40%, in agreement the earlier analyses for DM. We point out how the infall velocity in principle may be observable, by measuring the gas properties to distance of about two virial radii, however, this is practically not possible today.
The active galaxy PKS 0208-512, detected at lower energies by COMPTEL, has been claimed to be a MeV blazar from EGRET. We report on the most recent INTEGRAL observations of the blazar PKS 0208-512, which are supplemented by Swift ToO observations. Th e high energy X-ray and gamma-ray emission of PKS 0208-512 during August - December 2008 has been studied using 682 ks of INTEGRAL guest observer time and ~ 56 ks of Swift/XRT observations. These data were collected during the decay of a gamma-ray flare observed by Fermi/LAT. At X-ray energies (0.2 - 10 keV) PKS 0208-512 is significantly detected by Swift/XRT, showing a power-law spectrum with a photon index of ~ 1.64. Its X-ray luminosity varied by roughly 30% during one month. At hard X-/soft gamma-ray energies PKS 0208-512 shows a marginally significant (~ 3.2 sigma) emission in the 0.5-1 MeV band when combining all INTEGRAL/SPI data. Non-detections at energies below and above this band by INTEGRAL/SPI may indicate intrinsic excess emission. If this possible excess is produced by the blazar, one possible explanation could be that its jet consists of an abundant electron-positron plasma, which may lead to the emission of an annihilation radiation feature. Assuming this scenario, we estimate physical parameters of the jet of PKS 0208-512.
78 - Zhenghao Zhu 2021
Some observations such as those presented in Walker et al. show that the observed entropy profiles of the intra-cluster medium (ICM) deviate from the power-law prediction of adiabatic simulations. This implies that non-gravitational processes, which are absent in the simulations, may be important in the evolution of the ICM, and by quantifying the deviation, we may be able to estimate the feedback energy in the ICM and use it as a probe of the non-gravitational processes. To address this issue we calculate the ICM entropy profiles in a sample of 47 galaxy clusters and groups, which have been observed out to at least $sim r_{500}$ with Chandra, XMM-Newton and/or Suzaku, by constructing a physical model to incorporate the effects of both gravity and non-gravitational processes to fit the observed gas temperature and surface brightness profiles via Bayesian statistics. After carefully evaluating the effects of systematic errors, we find that the gas entropy profiles derived with best-fit results of our model are consistent with the simulation-predicted power-law profile near the virial radius, while the flattened profiles reported previously can be explained by introducing the gas clumping effect, the existence of which is confirmed in 19 luminous targets in our sample. We calculate the total feedback energy per particle and find that it decreases from $sim 10$ keV at the center to about zero at $sim 0.35$$r_{200}$ and is consistent with zero outside $sim 0.35$$r_{200}$, implying the upper limit of the feedback efficiency $sim 0.02$ for the super-massive black holes hosted in the brightest cluster galaxies.
102 - J. Li , S. Zhang , D. F. Torres 2012
IGR J18179-1621 is a hard X-ray binary transient discovered recently by INTEGRAL. Here we report on detailed timing and spectral analysis on IGR J18179-1621 in X-rays based on available INTEGRAL and Swift data. From the INTEGRAL analysis, IGR J18179- 1621 is detected with a significance of 21.6 sigma in the 18-40 keV band by ISGRI and 15.3 sigma in the 3-25 keV band by JEM-X, between 2012-02-29 and 2012-03-01. We analyze two quasisimultaneous Swift ToO observations. A clear 11.82 seconds pulsation is detected above the white noise at a confidence level larger than 99.99%. The pulse fraction is estimated as 22+/-8% in 0.2-10 keV. No sign of pulsation is detected by INTEGRAL/ISGRI in the 18-40 keV band. With Swift and INTEGRAL spectra combined in soft and hard X-rays, IGR J18179-1621 could be fitted by an absorbed power law with a high energy cutoff plus a Gaussian absorption line centered at 21.5 keV. An additional absorption intrinsic to the source is found, while the absorption line is evidence for most probably originated from cyclotron resonant scattering and suggests a magnetic field in the emitting region of sim 2.4 times 10^12 Gauss.
The 4th IBIS/ISGRI survey lists 723 hard X-ray sources many still unidentified. We cross-correlated the list of the sources included in the 4th IBIS catalogue with the Swift/XRT data archive, finding a sample of 20 objects for which XRT data could he lp in the search for the X-ray and hence optical counterpart and/or in the study of the source spectral and variability properties below 10 keV. Four objects (IGR J00465-4005, LEDA 96373, IGR J1248.2-5828 and IGR J13107-5626) are confirmed or likely absorbed active galaxies, while two (IGR J14080-3023 and 1RXS J213944.3+595016) are unabsorbed AGN. We find three peculiar extragalactic objects, NGC 4728 being a Narrow Line Seyfert galaxy, MCG+04-26-006 a type 2 LINER and PKS 1143-693 probably a QSO; furthermore, our results indicate that IGR J08262+4051 and IGR J22234-4116 are candidate AGN, which require further optical spectroscopic follow-up observations to be fully classified. In the case of 1RXS J080114.6-462324 we are confident that the source is a Galactic object. For IGR J10447-6027, IGR J12123-5802 and IGR J20569+4940 we pinpoint one X-ray counterpart, although its nature could not be assessed despite spectral and sometimes variability information being obtained. Clearly, we need to perform optical follow-up observations in order to firmly assess their nature. There are five objects for which we find no obvious X-ray counterpart (IGR J07506-1547 and IGR J17008-6425) or even no detection (IGR J17331-2406, IGR J18134-1636 and IGR J18175-1530); apart from IGR J18134-1636, all these sources are found to be variable in the IBIS energy band, therefore it is difficult to catch them even in X-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا