ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved constraints on cosmic microwave background secondary anisotropies from the complete 2008 South Pole Telescope data

87   0   0.0 ( 0 )
 نشر من قبل Erik Shirokoff
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of the cosmic microwave background (CMB) power spectrum from the complete 2008 South Pole Telescope (SPT) data set. We analyze twice as much data as the first SPT power spectrum analysis, using an improved cosmological parameter estimator which fits multi-frequency models to the SPT 150 and $220,$GHz bandpowers. We find an excellent fit to the measured bandpowers with a model that includes lensed primary CMB anisotropy, secondary thermal (tSZ) and kinetic (kSZ) Sunyaev-Zeldovich anisotropies, unclustered synchrotron point sources, and clustered dusty point sources. In addition to measuring the power spectrum of dusty galaxies at high signal-to-noise, the data primarily constrain a linear combination of the kSZ and tSZ anisotropy contributions at $150,$GHz and $ell=3000$: $D^{tSZ}_{3000} + 0.5,D^{kSZ}_{3000} = 4.5pm 1.0 ,mu{rm K}^2$. The 95% confidence upper limits on secondary anisotropy power are $D^{tSZ}_{3000} < 5.3,mu{rm K}^2$ and $D^{kSZ}_{3000} < 6.5,mu{rm K}^2$. We also consider the potential correlation of dusty and tSZ sources, and find it incapable of relaxing the tSZ upper limit. These results increase the significance of the lower than expected tSZ amplitude previously determined from SPT power spectrum measurements. We find that models including non-thermal pressure support in groups and clusters predict tSZ power in better agreement with the SPT data. Combining the tSZ power measurement with primary CMB data halves the statistical uncertainty on $sigma_8$. However, the preferred value of $sigma_8$ varies significantly between tSZ models. Improved constraints on cosmological parameters from tSZ power spectrum measurements require continued progress in the modeling of the tSZ power.

قيم البحث

اقرأ أيضاً

114 - D. Hanson , S. Hoover , A. Crites 2013
Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This B-mode signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminan t for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a non-zero correlation at 7.7 sigma significance. The correlation has an amplitude and scale-dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.
279 - Cora Dvorkin 2011
The predictions of the inflationary LCDM paradigm match todays high-precision measurements of the cosmic microwave background anisotropy extremely well. The same data put tight limits on other sources of anisotropy. Cosmic strings are a particularly interesting alternate source to constrain. Strings are topological defects, remnants of inflationary-era physics that persist after the big bang. They are formed in a variety of models of inflation, including string theory models such as brane inflation. We assume a Nambu-Goto model for strings, approximated by a collection of unconnected segments with zero width, and show that measurements of temperature anisotropy by the South Pole Telescope break a parameter degeneracy in the WMAP data, permitting us to place a strong upper limit on the possible string contribution to the CMB anisotropy: the power sourced by zero-width strings must be <1.75% (95% CL) of the total or the string tension Gmu <1.7x10^{-7}. These limits imply that the best hope for detecting strings in the CMB will come from B-mode polarization measurements at arcminute scales rather than the degree scale measurements pursued for gravitational wave detection.
We report new measurements of millimeter-wave power spectra in the angular multipole range $2000 le ell le 11,000$ (angular scales $5^prime gtrsim theta gtrsim 1^prime$). By adding 95 and 150,GHz data from the low-noise 500 deg$^2$ SPTpol survey to t he SPT-SZ three-frequency 2540 deg$^2$ survey, we substantially reduce the uncertainties in these bands. These power spectra include contributions from the primary cosmic microwave background, cosmic infrared background, radio galaxies, and thermal and kinematic Sunyaev-Zeldovich (SZ) effects. The data favor a thermal SZ (tSZ) power at 143,GHz of $D^{rm tSZ}_{3000} = 3.42 pm 0.54~ mu {rm K}^2$ and a kinematic SZ (kSZ) power of $D^{rm kSZ}_{3000} = 3.0 pm 1.0~ mu {rm K}^2$. This is the first measurement of kSZ power at $ge 3,sigma$. We study the implications of the measured kSZ power for the epoch of reionization, finding the duration of reionization to be $Delta z_{re} = 1.0^{+1.6}_{-0.7}$ ($Delta z_{re}< 4.1$ at 95% confidence), when combined with our previously published tSZ bispectrum measurement.
Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error and find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly $0.85sigma$ in units of the statistical error bar, although this estimate should be viewed as an upper limit. We apply our maximum likelihood technique to 513 clusters selected via their SZ signatures in SPT data, and rule out the null hypothesis of no lensing at $3.1sigma$. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: $M_{200,mathrm{lens}} = 0.83_{-0.37}^{+0.38}, M_{200,mathrm{SZ}}$ (68% C.L., statistical error only).
We use South Pole Telescope data from 2008 and 2009 to detect the non-Gaussian signature in the cosmic microwave background (CMB) produced by gravitational lensing and to measure the power spectrum of the projected gravitational potential. We constra in the ratio of the measured amplitude of the lensing signal to that expected in a fiducial LCDM cosmological model to be 0.86 +/- 0.16, with no lensing disfavored at 6.3 sigma. Marginalizing over LCDM cosmological models allowed by the WMAP7 results in a measurement of A_lens=0.90+/-0.19, indicating that the amplitude of matter fluctuations over the redshift range 0.5 <~ z <~ 5 probed by CMB lensing is in good agreement with predictions. We present the results of several consistency checks. These include a clear detection of the lensing signature in CMB maps filtered to have no overlap in Fourier space, as well as a curl diagnostic that is consistent with the signal expected for LCDM. We perform a detailed study of bias in the measurement due to noise, foregrounds, and other effects and determine that these contributions are relatively small compared to the statistical uncertainty in the measurement. We combine this lensing measurement with results from WMAP7 to improve constraints on cosmological parameters when compared to those from WMAP7 alone: we find a factor of 3.9 improvement in the measurement of the spatial curvature of the Universe, Omega_k=-0.0014+/-0.0172; a 10% improvement in the amplitude of matter fluctuations within LCDM, sigma_8=0.810+/ 0.026; and a 5% improvement in the dark energy equation of state, w=-1.04+/-0.40. When compared with the measurement of w provided by the combination of WMAP7 and external constraints on the Hubble parameter, the addition of the lensing data improve the measurement of w by 15% to give w=-1.087+/-0.096.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا