ﻻ يوجد ملخص باللغة العربية
The possibility that particle production in high-energy collisions is a result of two asymmetric hydrodynamic flows is investigated, using the Khalatnikov form of the 1+1-dimensional approximation of hydrodynamic equations. The general solution is discussed and applied to the physically appealing generalized in-out cascade where the space-time and energy-momentum rapidities are equal at initial temperature but boost-invariance is not imposed. It is demonstrated that the two-bump structure of the entropy density, characteristic of the asymmetric input, changes easily into a single broad maximum compatible with data on particle production in symmetric processes. A possible microscopic QCD interpretation of asymmetric hydrodynamics is proposed.
Recently a detailed correspondence was established between, on one side, four and five-dimensional large-N supersymmetric gauge theories with $mathcal{N}=2$ supersymmetry and adjoint matter, and, on the other side, integrable 1+1-dimensional quantum
We consider the effects of an external magnetic field on rotating fermions in 1+2,3 dimensions. The dual effect of a rotation parallel to the magnetic field causes a net increase in the fermionic density by centrifugation, which follows from the sink
We give a brief overview of the kinetic theory for spin-1/2 fermions in Wigner function formulism. The chiral and spin kinetic equations can be derived from equations for Wigner functions. A general Wigner function has 16 components which satisfy 32
We obtain wave functionals of free real and complex scalar fields on a 1+1 dimensional lattice by explicitly calculating the path integral for transition from one field configuration to another. The obtained expressions are useful for cross-checking
Study of thermal particle production is crucial to understand the space-time evolution of the fireball produced in high energy heavy-ion collisions. We consider thermal particle production within the framework of relativistic viscous hydrodynamics an