ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the Decoherence of Entangled Kaons by the Interaction with Thermal Photons

340   0   0.0 ( 0 )
 نشر من قبل Michal Silarski
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The KLOE-2 detector is a powerful tool to study the temporal evolution of quantum entangled pairs of kaons. The accuracy of such studies may in principle be limited by the interaction of neutral kaons with thermal photons present inside the detector. Therefore, it is crucial to estimate the probability of this effect and its influence on the interference patterns. In this paper we introduce the phenomenology of the interaction of photons with neutral kaons and present and discuss the obtained quantitative results.

قيم البحث

اقرأ أيضاً

Light incident upon molecules trigger fundamental processes in diverse systems present in nature. However, under natural conditions, such as sunlight illumination, it is impossible to assign known times for photon arrival owing to continuous pumping, and therefore, the photo-induced processes cannot be easily investigated. In this work, we theoretically demonstrate that characteristics of sunlight photons such as photon number statistics and spectral distribution can be emulated through quantum entangled photon pair generated with the parametric down-conversion (PDC). We show that the average photon number of the sunlight in a specific frequency spectrum, e.g., the visible light, can be reconstructed by adjusting the PDC crystal length and pump frequency, and thereby molecular dynamics induced by the pseudo-sunlight can be investigated. The entanglement time, which is the hallmark of quantum entangled photons, can serve as a control knob to resolve the photon arrival times, enabling investigations on real-time dynamics triggered by the pseudo-sunlight photons.
The $J/psi$-nucleon interaction is studied by lattice QCD calculations. At the leading order of the derivative expansion, the interaction consists of four terms: the central, the spin-spin, and two types of tensor forces. We determine these spin-depe ndent forces quantitatively by using the time-dependent HAL QCD method. We find that the spin-spin force is the main cause of the hyperfine splitting between the $J=1/2$ and the $J=3/2$ states, while the two tensor forces have much smaller effects on the S-wave scattering processes.
Quantum nonlocality is arguably among the most counter-intuitive phenomena predicted by quantum theory. In recent years, the development of an abstract theory of nonlocality has brought a much deeper understanding of the subject. In parallel, experim ental progress allowed for the demonstration of quantum nonlocality in a wide range of physical systems, and brings us close to a final loophole-free Bell test. Here we combine these theoretical and experimental developments in order to explore the limits of quantum nonlocality. This approach represents a thorough test of quantum theory, and could provide evidence of new physics beyond the quantum model. Using a versatile and high-fidelity source of pairs of polarization entangled photons, we explore the boundary of quantum correlations, present the most nonlocal correlations ever reported, demonstrate the phenomenon of more nonlocality with less entanglement, and show that non-planar (and hence complex) qubit measurements can be necessary to reproduce the strong qubit correlations that we observed. Our results are in remarkable agreement with quantum predictions.
In this paper we present a novel CPT symmetry test in the neutral kaon system based, for the first time, on the direct comparison of the probabilities of a transition and its CPT reverse. The required interchange of in $leftrightarrow$ out states for a given process is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral kaon pairs produced at a $phi$-factory. The observable quantities have been constructed by selecting the two semileptonic decays for flavour tag, the $pipi$ and $3pi^0$ decays for CP tag and the time orderings of the decay pairs. The interpretation in terms of the standard Weisskopf-Wigner approach to this system, directly connects CPT violation in these observables to the violating $Redelta$ parameter in the mass matrix of $K^0$-$bar{K^0}$, a genuine CPT violating effect independent of $Delta Gamma$ and not requiring the decay as an essential ingredient. Possible spurious effects induced by CP violation in the decay and/or a violation of the $Delta S= Delta Q$ rule have been shown to be well under control. The proposed test is thus fully robust, and might shed light on possible new CPT violating mechanisms, or further improve the precision of the present experimental limits. It could be implemented at the DA$Phi$NE facility in Frascati, where the KLOE-2 experiment might reach a statistical sensitivity of $mathcal{O}(10^{-3})$ on the newly proposed observable quantities.
60 - S. Portolan 2005
We investigate the influence of environmental noise on polarization entangled light generated by parametric emission in a cavity. By adopting a recently developed separability criterion, we show that: i) self-stimulation may suppress the detrimental influence of noise on entanglement; ii) when self-stimulation becomes effective, a classical model of parametric emission incorporating noise provides the same results of quantum theory for the expectation values involved in the separability criterion. Moreover we show that, in the macroscopic limit, it is impossible to observe violations of local realism with measurements of $n$-particle correlations, whatever n but finite. These results provide an interesting example of the emergence of macroscopic local realism in the presence of strong entanglement even in the absence of decoherence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا