ﻻ يوجد ملخص باللغة العربية
We investigate the column density distribution function of neutral hydrogen at redshift z = 3 using a cosmological simulation of galaxy formation from the OverWhelmingly Large Simulations (OWLS) project. The base simulation includes gravity, hydrodynamics, star formation, supernovae feedback, stellar winds, chemodynamics, and element-by-element cooling in the presence of a uniform UV background. Self-shielding and formation of molecular hydrogen are treated in post-processing, without introducing any free parameters, using an accurate reverse ray-tracing algorithm and an empirical relation between gas pressure and molecular mass fraction. The simulation reproduces the observed z = 3 abundance of Ly-A forest, Lyman Limit and Damped Ly-A HI absorption systems probed by quasar sight lines over ten orders of magnitude in column density. Self-shielding flattens the column density distribution for NHI > 10^18 cm-2, while the conversion to fully neutral gas and conversion of HI to H2 steepen it around column densities of NHI = 10^20.3 cm-2 and NHI = 10^21.5 cm-2, respectively.
Galaxy disks are shown to contain a significant population of atomic clouds of 100pc linear size which are self-opaque in the 21cm transition. These objects have HI column densities as high as 10^23 and contribute to a global opacity correction facto
We study the properties of two bars formed in fully cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies. In one case, the bar formed in a system with disc, bulge and halo components and is relatively strong and long, a
Major mergers of disk galaxies are thought to be a substantial driver in galaxy evolution. To trace the fraction and the rate galaxies are in mergers over cosmic times, several observational techniques, including morphological selection criteria, hav
We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential $psi$ tha
The Square Kilometre Array (SKA) will conduct the biggest spectroscopic galaxy survey ever, by detecting the 21cm emission line of neutral hydrogen (HI) from around a billion galaxies over 3/4 of the sky, out to a redshift of z~2. This will allow the