ترغب بنشر مسار تعليمي؟ اضغط هنا

An optical and HI study of the dwarf Local Group galaxy VV124=UGC4879. A gas-poor dwarf with a stellar disk?

53   0   0.0 ( 0 )
 نشر من قبل Michele Bellazzini
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the dwarf galaxy VV124, recently recognized as a isolated member of the Local Group. We have obtained deep (r=26.5) wide-field g,r photometry of individual stars with the LBT under sub-arcsec seeing conditions. The Color-Magnitude Diagram suggests that the stellar content of the galaxy is dominated by an old, metal-poor population, with a significant metallicity spread. A very clean detection of the RGB tip allows us to derive an accurate distance of D=1.3 +/- 0.1 Mpc. Combining surface photometry with star counts, we are able to trace the surface brightness profile of VV124 out to ~ 5 = 1.9 kpc radius (where mu_r=30 mag/arcsec^2), showing that it is much more extended than previously believed. Moreover, the surface density map reveals the presence of two symmetric flattened wings emanating from the central elongated spheroid and aligned with its major axis, resembling a stellar disk seen nearly edge-on. We also present HI observations obtained with the WSRT, the first ever of this object. A total amount of 10^6 M_sun of HI gas is detected in VV124. Compared to the total luminosity, this gives a value of M_HI/L_V=0.11, which is particularly low for isolated Local Group dwarfs. The spatial distribution of the gas does not correlate with the observed stellar wings. The systemic velocity of the HI in the region superposed to the stellar main body of the galaxy is V_h=-25 km/s. The velocity field shows substructures typical of galaxies of this size but no sign of rotation. The HI spectra indicates the presence of a two-phase interstellar medium, again typical of many dwarf galaxies.

قيم البحث

اقرأ أيضاً

We present the first resolved-star photometry of VV124 (UGC4879) and find that this is the most isolated dwarf galaxy in the periphery of the Local Group. Based on imaging and spectroscopic follow up observations with the 6m BTA telescope, we resolve VV124 into 1560 stars down to the limiting magnitude levels of V~25.6 and I~23.9. The young blue stellar populations and emission gas are found near the core, but noticeably displaced from the center of the galaxy as traced by dominant evolved red stars. The mean radial velocity derived from the spectra of two Blue Supergiant stars, an HII region and unresolved continuum sources is -80+/-10 km/s. The evolved ``red tangle stellar populations, which contains the red giant branch (RGB), are identified at large galactocentric radii. We use the I-band luminosity function to determine the distance based on the Tip of RGB method, 1.1+/-0.1 Mpc. This is ~10 times closer than the values usually assumed in the literature, and we provide revised distance dependent parameters. From the mean (V-I) color of the RGB, we estimate the mean metallicity as [Fe/H]~-1.37 dex. Despite of its isolated location, the properties of VV124 are clearly not those of a galaxy in formation, but rather similar to a transitional dIrr/dSph type.
68 - Amanda Kepley 2007
Dwarf irregular galaxies are unique laboratories for studying the interaction between stars and the interstellar medium in low mass environments. We present the highest spatial resolution observations to date of the neutral hydrogen content of the Lo cal Group dwarf irregular galaxy WLM. We find that WLMs neutral hydrogen distribution is typical for a galaxy of its type and size and derive an HI mass of 6.3e7 Msun for WLM. In addition, we derive an HI extent for WLM of 30 arcmin, which is much less than the 45 arcmin extent found by Huchtmeier, Seiradakis, and Materne (1981). We show that the broken ring of high column density neutral hydrogen surrounding the center of WLM is likely the result of star formation propagating out from the center of the galaxy. The young stars and Ha emission in this galaxy are mostly correlated with the high column density neutral hydrogen. The gap in the central ring is the result of star formation in that region using up, blowing out, or ionizing all of the neutral hydrogen. Like many late-type galaxies, WLMs velocity field is asymmetric with the approaching (northern) side appearing to be warped and a steeper velocity gradient for the approaching side than for the receding side in the inner region of the galaxy. We derive a dynamical mass for WLM of 2.16e9 Msun.
64 - Luca Beale 2020
Dedicated HI surveys have recently led to a growing category of low-mass galaxies found in the Local Volume. We present synthesis imaging of one such galaxy, Pisces A, a low-mass dwarf originally confirmed via optical imaging and spectroscopy of neut ral hydrogen (HI) sources in the Galactic Arecibo L-band Feed Array HI (GALFA-HI) survey. Using HI observations taken with the Karl G. Jansky Very Large Array (JVLA), we characterize the kinematic structure of the gas and connect it to the galaxys environment and evolutionary history. While the galaxy shows overall ordered rotation, a number of kinematic features indicate a disturbed gas morphology. These features are suggestive of a tumultuous recent history, and represent $sim 3.5$% of the total baryonic mass. We find a total baryon fraction $f_{rm bary} = 0.13$ if we include these features. We also quantify the cosmic environment of Pisces A, finding an apparent alignment of the disturbed gas with nearby, large scale filamentary structure at the edge of the Local Void. We consider several scenarios for the origin of the disturbed gas, including gas stripping via ram pressure or galaxy-galaxy interactions, as well as accretion and ram pressure compression. Though we cannot rule out a past interaction with a companion, our observations best support the suggestion that the neutral gas morphology and recent star formation in Pisces A is a direct result of its interactions with the IGM.
Context. Outflows powered by the injection of kinetic energy from massive stars can strongly affect the chemical evolution of galaxies, in particular of dwarf galaxies, as their lower gravitational potentials enhance the chance of a galactic wind. Aims. We therefore performed a detailed kinematic analysis of the neutral and ionised gas components in the nearby star-forming irregular dwarf galaxy NGC 4861. Similar to a recently published study of NGC 2366, we want to make predictions about the fate of the gas and to discuss some general issues about this galaxy. Methods. Fabry-Perot interferometric data centred on the Halpha line were obtained with the 1.93m telescope at the Observatoire de Haute-Provence. They were complemented by HI synthesis data from the VLA. We performed a Gaussian decomposition of both the Halpha and the HI emission lines in order to search for multiple components indicating outflowing gas. The expansion velocities of the detected outflows were compared to the escape velocity of NGC 4861, which was modelled with a pseudo-isothermal halo. Results. Both in Halpha and HI the galaxy shows several outflows, three directly connected to the disc and probably forming the edges of a supergiant shell, and one at kpc-distance from the disc. We measured velocity offsets of 20 to 30 km/s, which are low in comparison to the escape velocity of the galaxy and therefore minimise the chance of a galactic wind.
We present deep Hubble Space Telescope single-star photometry of Leo A in B, V, and I. Our new field of view is offset from the centrally located field observed by Tolstoy et al. (1998) in order to expose the halo population of this galaxy. We report the detection of metal-poor red horizontal branch stars, which demonstrate that Leo A is not a young galaxy. In fact, Leo A is as least as old as metal-poor Galactic Globular Clusters which exhibit red horizontal branches, and are considered to have a minimum age of about 9 Gyr. We discuss the distance to Leo A, and perform an extensive comparison of the data with stellar isochrones. For a distance modulus of 24.5, the data are better than 50% complete down to absolute magnitudes of 2 or more. We can easily identify stars with metallicities between 0.0001 and 0.0004, and ages between about 5 and 10 Gyr, in their post-main-sequence phases, but lack the detection of main-sequence turnoffs which would provide unambiguous proof of ancient (>10 Gyr) stellar generations. Blue horizontal branch stars are above the detection limits, but difficult to distinguish from young stars with similar colors and magnitudes. Synthetic color-magnitude diagrams show it is possible to populate the blue horizontal branch in the halo of Leo A. The models also suggest ~50% of the total astrated mass in our pointing to be attributed to an ancient (>10 Gyr) stellar population. We conclude that Leo A started to form stars at least about 9 Gyr ago. Leo A exhibits an extremely low oxygen abundance, of only 3% of Solar, in its ionized interstellar medium. The existence of old stars in this very oxygen-deficient galaxy illustrates that a low oxygen abundance does not preclude a history of early star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا