ترغب بنشر مسار تعليمي؟ اضغط هنا

On the spectral resolution of the MILES stellar library

269   0   0.0 ( 0 )
 نشر من قبل Alessandra Beifiori
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Empirical stellar libraries are extensively used to extract stellar kinematics in galaxies and to build stellar population models. An accurate knowledge of the spectral resolution of these libraries is critical to avoid propagation errors and uncertain estimates of the intrinsic stellar velocity dispersion of galaxies. In this research note we re-assess the spectral resolution of the MILES stellar library and of the stellar population models based on it. This exercise was performed, because of a recent controversy over the exact MILES resolution. We perform our test through the comparison of MILES stellar spectra with three different sets of higher-resolution templates, one fully theoretical - the MARCS library - and two empirical ones, namely the Indo-U.S. and ELODIE v3.1 libraries. The theoretical template has a well-defined very high (R=20000) resolution. Hence errors on this theoretical value do not affect our conclusions. Our approach based on the MARCS library was crucial to constrain the values of the resolution also for the other two empirical templates. We find that the MILES resolution has previously been slightly overestimated. We derive a new spectral resolution of 2.54 A FWHM, instead of the nominal 2.3 A. The reason for this difference is due to an overestimation of the resolution for the Indo-U.S. library that was previously used for estimates of the MILES resolution. For the Indo-U.S. we obtain a new value of 1.35 A FWHM. Most importantly, the results derived from the MARCS and ELODIE libraries are in very good agreement. These results are important for users of the MILES spectra library and for further development of stellar population models aimed to obtain accurate stellar kinematics in galaxies.



قيم البحث

اقرأ أيضاً

(Aims) We present a number of improvements to the MILES library and stellar population models. We correct some small errors in the radial velocities of the stars, measure the spectral resolution of the library and models more accurately, and give a b etter absolute flux calibration of the models. (Methods) We use cross-correlation techniques to correct the radial velocities of the offset stars and the penalised pixel-fitting method, together with different sets of stellar templates, to re-assess the spectral resolution of the MILES stellar library and models. We have also re-calibrated the zero-point flux level of the models using a new calibration scheme. (Results) The end result is an even more homogeneously calibrated stellar library than the originally released one, with a measured spectral resolution of ~2.5AA, almost constant with wavelength, for both the MILES stellar library and models. Furthermore, the new absolute flux calibration for the spectra excellently agrees with predictions based on independent photometric libraries. (Conclusions) This improved version of the MILES library and models (version 9.1) is available at the projects website (http://miles.iac.es).
We have obtained [Mg/Fe] measurements for 76.3% of the stars in the MILES spectral library used for understanding stellar atmospheres and stellar populations in galaxies and star clusters. These abundance ratios were obtained through (1) a compilatio n of values from the literature using abundances from high-resolution spectroscopic studies and (2) a robust spectroscopic analysis using the MILES mid-resolution optical spectra. All the [Mg/Fe] values were carefully calibrated to a single uniform scale, by using an extensive control sample with results from high-resolution spectra. The small average uncertainties in the calibrated [Mg/Fe] values (respectively 0.09 and 0.12 dex with methods (1) and (2)) and the good coverage of the stars with [Mg/Fe] over stellar atmospheric parameter space of the library will permit the building of new simple stellar populations (SSPs) with empirical $alpha$-enhancements. These will be available for a range of [Mg/Fe], including both sub-solar and super-solar values, and for several metallicities and ages. These models will open up new prospects for testing and applications of evolutionary stellar population synthesis.
121 - A. Milone 2009
We have obtained [Mg/Fe] for around 77% of the stars of the MILES library of stellar spectra in order to include this important information into simple stellar population (SSP) models. The abundance ratios, which were carefully calibrated to a single uniform scale, were obtained through a compilation from high spectral resolution works plus robust spectroscopic analysis at medium resolution. The high resolution data provided an extensive control sample. Average uncertainties (0.06 and 0.12 dex for the high and medium resolution samples respectively) and the good coverage of the stars with [Mg/Fe] over the MILESs parameter space will permit us to semi-empirically build up new SSP models with accurate alpha-enhancements for ages older than 1 Gyr. This will open new prospects for evolutionary stellar population synthesis.
MEGARA (Multi Espectr{o}grafo en GTC de Alta Resoluci{o}n para Astronom{i}a) is an optical (3650~--~9750AA), fibre-fed, medium-high spectral resolution (R = 6000, 12000, 20000) instrument for the GTC 10.4m telescope, commissioned in the summer of 201 7, and currently in operation. The scientific exploitation of MEGARA demands a stellar-spectra library to interpret galaxy data and to estimate the contribution of the stellar populations. This paper introduces the MEGARA-GTC spectral library, detailing the rationale behind the catalogue building. We present the spectra of 97 stars (21 individual stars and 56 members of the globular cluster M15, being both sub-samples taken during the commissioning runs; and 20 stars from our on-going GTC Open-Time program). The spectra have R~=~20000 in the HR-R and HR-I setups, centred at 6563 and 8633~AA respectively. We describe the procedures to reduce and analyse the data. Then, we determine the best-fitting theoretical models to each spectrum through a $chi^{2}$ minimisation technique to derive the stellar physical parameters and discuss the results. We have also measured some absorption lines and indices. Finally, this article introduces our project to complete the library and the database to make the spectra available to the community.
A new stellar library developed for stellar population synthesis modeling is presented. The library consist of 985 stars spanning a large range in atmospheric parameters. The spectra were obtained at the 2.5m INT telescope and cover the range 3525-75 00A at 2.3A (FWHM) spectral resolution. The spectral resolution, spectral type coverage, flux calibration accuracy and number of stars represent a substantial improvement over previous libraries used in population synthesis models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا