ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear PDF for neutrino and charged lepton data

103   0   0.0 ( 0 )
 نشر من قبل Karol Kovarik
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف K. Kovarik




اسأل ChatGPT حول البحث

Neutrino Deep Inelastic Scattering on nuclei is an essential process to constrain the strange quark parton distribution functions in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions. Here we compare results from two analysis of NPDF both done at next-to-leading order in QCD. The first uses neutral current charged-lepton lA Deeply Inelastic Scattering and Drell-Yan data for several nuclear targets and the second uses neutrino-nucleon DIS data. We compare the nuclear corrections factors F_2^Fe/F_2^D for the charged-lepton data with other results from the literature. In particular, we compare and contrast fits based upon the charged-lepton DIS data with those using neutrino-nucleon DIS data.



قيم البحث

اقرأ أيضاً

Experimentally, baryon number minus lepton number, $B-L$, appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under $B-L$ -- dubbed lepton-number-charged scalars, LeNCS - - and postulate that these couple to the standard model degrees of freedom in such a way that $B-L$ is conserved even at the non-renormalizable level. In this framework, neutrinos are Dirac fermions. Including only the lowest mass-dimension effective operators, some of the LeNCS couple predominantly to neutrinos and may be produced in terrestrial neutrino experiments. We examine several existing constraints from particle physics, astrophysics, and cosmology to the existence of a LeNCS carrying $B-L$ charge equal to two, and discuss the emission of LeNCSs via neutrino beamstrahlung, which occurs every once in a while when neutrinos scatter off of ordinary matter. We identify regions of the parameter space where existing and future neutrino experiments, including the Deep Underground Neutrino Experiment, are at the frontier of searches for such new phenomena.
The neutrino deep inelastic scattering (DIS) data is very interesting for global analyses of proton and nuclear parton distribution functions (PDFs) since they provide crucial information on the strange quark distribution in the proton and allow for a better flavor decompositon of the PDFs. In order to use neutrino DIS data in a global analysis of proton PDFs nuclear effects need to be understood. We study these effects with the help of nuclear PDFs extracted from global analyses of charged-lepton DIS, Drell-Yan and neutrino DIS data at next-to-leading order in QCD.
The nuclear parton distribution functions (nPDFs) of gluons are known to be difficult to determine with fits of deep inelastic scattering (DIS) and Drell-Yan (DY) data alone. Therefore, the nCTEQ15 analysis of nuclear PDFs added inclusive neutral pio n production data from RHIC to help in constraining the gluon. In this analysis, we present a new global analysis of nuclear PDFs based on a much larger set of single inclusive light hadron data from RHIC and the LHC. Using our new nCTEQ code (nCTEQ++) with an optimized version of INCNLO we study systematically the limitations of the theory and the impact of the fragmentation function uncertainty.
After the successful determination of the reactor neutrino mixing angle theta_13 ~ 0.16 eq 0, a new feature suggested by the current neutrino oscillation data is a sizeable deviation of the atmospheric neutrino mixing angle theta_23 from pi/4. Using the fact that the neutrino mixing matrix U = U_e^dagger U_ u, where U_e and U_ u result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming that U_ u has a i) bimaximal (BM), ii) tri-bimaximal (TBM) form, or else iii) corresponds to the conservation of the lepton charge L = L_e - L_mu - L_tau (LC), we investigate quantitatively what are the minimal forms of U_e, in terms of angles and phases it contains, that can provide the requisite corrections to U_ u so that theta_13, theta_23 and the solar neutrino mixing angle theta_12 have values compatible with the current data. Two possible orderings of the 12 and the 23 rotations in U_e, standard and inverse, are considered. The results we obtain depend strongly on the type of ordering. In the case of standard ordering, in particular, the Dirac CP violation phase delta, present in U, is predicted to have a value in a narrow interval around i) delta ~ pi in the BM (or LC) case, ii) delta ~ 3pi/2 or pi/2 in the TBM case, the CP conserving values delta = 0, pi, 2pi being excluded in the TBM case at more than 4sigma. In the addendum we discuss the implications of the latest 2013 data.
We construct a class of renormalizable models for lepton mixing that generate predictions given in terms of the charged-lepton mass ratios. We show that one of those models leads, when one takes into account the known experimental values, to almost m aximal CP-breaking phases and to almost maximal neutrinoless double-beta decay. We study in detail the scalar potential of the models, especially the bounds imposed by unitarity on the values of the quartic couplings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا