ترغب بنشر مسار تعليمي؟ اضغط هنا

Latent heat of nuclear matter

44   0   0.0 ( 0 )
 نشر من قبل Arianna Carbone
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the latent heat of the liquid-gas phase transition in symmetric nuclear matter using self-consistent mean-field calculations with a few Skyrme forces. The temperature dependence of the latent heat is rather independent of the mean-field parametrization and can be characterized by a few parameters. At low temperatures, the latent heat tends to the saturation energy. Near the critical point, the latent heat goes to zero with a well-determined mean-field critical exponent. A maximum value of the latent heat in the range l ~ 25-30 MeV is found at intermediate temperatures, which might have experimental relevance. All these features can be explained from very basic principles.

قيم البحث

اقرأ أيضاً

We establish bounds on the maximum possible specific latent heat of cold neutron-star matter derived from hadron physics alone. Existing chiral perturbation theory computations for the equation of state, together with perturbative Quantum Chromodynam ics, relevant at highest densities (even if they would turn out not to be physically realizable) bind the maximum latent heat which is possible in actual neutron stars. Because these are already near gravitational collapse in General Relativity, no denser form of cold matter can exist: thus, the bounds are a generic physical limit. Even in scenarios that modify the theory of gravity, the existence of a family of latent-heat maxima is relevant to diagnose progress in the knowledge of the equation of state of neutron matter, by quantifying the maximum possible (presumed) phase transition that its error bands would allow. Thus, latent heat is a natural benchmark for the equation of state in cold QCD.
Shear viscosity $eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective ove rdamped motion. In the frequent-collision regime, the shear viscosity depends on the particle-number density $n$ through the mean-field parameter $a$, which describes attractive forces in the VDW equation. In the temperature region $T=15 - 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5 - 1.5),n^{}_0$, where $n^{}_0=0.16,$fm$^{-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $eta/sgg 1$ are, however, found in both the low-density, $nll n^{}_0$, and high-density, $n>2n^{}_0$, regions. This makes the ideal hydrodynamic approach inapplicable for these densities.
216 - W. Zuo , U. Lombardo , C.W. Shen 2002
The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon $E_A(delta)$ calculated in the full range of spin p olarization ${delta} = frac{rho_{uparrow}-rho_{downarrow}}{rho}$ for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter $G_0$. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two body force. The EOS is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.
85 - M. Beyer 2005
We investigate the properties of 3He, 4He, 6He, 7Li and 16O nuclei in nuclear matter of finite temperature and density. A Dyson expansion of the many-body Green function leads to few-body equations that are solved using the ntegro-Differential Equati on Approach (IDEA) and the Antisymmetrized Molecular Dynamics (AMD) methods. The use of the latter method allows us to trace the individual movement of the wave packet for each nucleon and the formation and disintegration of quasi-nuclei in a changing thermodynamical nuclear matter environment.
The existence of phase transitions from liquid to gas phases in asymmetric nuclear matter (ANM) is related with the instability regions which are limited by the spinodals. In this work we investigate the instabilities in ANM described within relativi stic mean field hadron models, both with constant and density dependent couplings at zero and finite temperatures. In calculating the proton and neutron chemical potentials we have used an expansion in terms of Bessel functions that is convenient at low densities. The role of the isovector scalar $delta$-meson is also investigated in the framework of relativistic mean field models and density dependent hadronic models. It is shown that the main differences occur at finite temperature and large isospin asymmetry close to the boundary of the instability regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا