ترغب بنشر مسار تعليمي؟ اضغط هنا

Millimeter Imaging of the beta Pictoris Debris Disk: Evidence for a Planetesimal Belt

131   0   0.0 ( 0 )
 نشر من قبل David J. Wilner
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations at 1.3 millimeters wavelength of the beta Pictoris debris disk with beam size 4.3 x 2.6 arcsec (83 x 50 AU) from the Submillimeter Array. The emission shows two peaks separated by ~7 arsec along the disk plane, which we interpret as a highly inclined dust ring or belt. A simple model constrains the belt center to 94+/-8 AU, close to the prominent break in slope of the optical scattered light. We identify this region as the location as the main reservoir of dust producing planetesimals in the disk.



قيم البحث

اقرأ أيضاً

The young star beta Pictoris is well known for its dusty debris disk, produced through the grinding down by collisions of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbi t the star, likely the result from vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio 20x higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent with that previously reported being observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher-density region in the disk, perhaps in the shape of a clump or a dense torus, required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by ALMA in the disk, and that the re-distribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution.
We present imaging observations at 1.3 millimeters of the debris disk surrounding the nearby M-type flare star AU Mic with beam size 3 arcsec (30 AU) from the Submillimeter Array. These data reveal a belt of thermal dust emission surrounding the star with the same edge-on geometry as the more extended scattered light disk detected at optical wavelengths. Simple modeling indicates a central radius of ~35 AU for the emission belt. This location is consistent with the reservoir of planetesimals previously invoked to explain the shape of the scattered light surface brightness profile through size-dependent dust dynamics. The identification of this belt further strengthens the kinship between the debris disks around AU Mic and its more massive sister star beta Pic, members of the same ~10 Myr-old moving group.
(Abridged.) We present F435W (B), F606W (Broad V), and F814W (Broad I) coronagraphic images of the debris disk around Beta Pictoris obtained with HSTs Advanced Camera for Surveys. We confirm that the previously reported warp in the inner disk is a di stinct secondary disk inclined by ~5 deg from the main disk. The main disks northeast extension is linear from 80 to 250 AU, but the southwest extension is distinctly bowed with an amplitude of ~1 AU over the same region. Both extensions of the secondary disk appear linear, but not collinear, from 80 to 150 AU. Within ~120 AU of the star, the main disk is ~50% thinner than previously reported. The surface-brightness profiles along the spine of the main disk are fitted with four distinct radial power laws between 40 and 250 AU, while those of the secondary disk between 80 and 150 AU are fitted with single power laws. These discrepancies suggest that the two disks have different grain compositions or size distributions. The F606W/F435W and F814W/F435W flux ratios of the composite disk are nonuniform and asymmetric about both projected axes of the disk. Within ~120 AU, the m_F435W-m_F606W and m_F435W-m_F814W colors along the spine of the main disk are ~10% and ~20% redder, respectively, than those of Beta Pic. These colors increasingly redden beyond ~120 AU, becoming 25% and 40% redder, respectively, than the star at 250 AU. We compare the observed red colors within ~120 AU with the simulated colors of non-icy grains having a radial number density ~r^-3 and different compositions, porosities, and minimum grain sizes. The observed colors are consistent with those of compact or moderately porous grains of astronomical silicate and/or graphite with sizes >0.15-0.20 um, but the colors are inconsistent with the blue colors expected from grains with porosities >90%.
219 - Rene Liseau 2003
We present millimeter imaging observations in the 1200 micron continuum of the disk around beta Pictoris. With the 25 arcsec beam, the beta Pic disk is unresolved perpendicularly to the disk plane (< 10 arcsec), but slightly resolved in the northeast -southwest direction (26 arcsec). Peak emission is observed at the stellar position. A secondary maximum is found 1000 AU along the disk plane in the southwest, which does not positionally coincide with a similar feature reported earlier at 850 micron. Arguments are presented which could be seen in support of the reality of these features. The observed submm/mm emission is consistent with thermal emission from dust grains, which are significantly larger than those generally found in the interstellar medium, including mm-size particles, and thus more reminiscent of the dust observed in protostellar disks. Modelling the observed scattered light in the visible and the emission in the submm/mm provides evidence for the particles dominating the scattering in the visible/NIR and those primarily responsible for the thermal emission at longer wavelengths belonging to different populations.
Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at submm wavelengths of the archetypal debris disk around $beta$ Pictoris show t hat 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85AU from the star, in a plane closely aligned with the orbit of the inner planet, $beta$ Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا