ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation Environment In Earth-Moon Space: Results From RADOM Experiment Onboard Chandrayaan-1

31   0   0.0 ( 0 )
 نشر من قبل Santosh Vadawale
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Radiation Monitor (RADOM) payload is a miniature dosimeter-spectrometer onboard Chandrayaan-1 mission for monitoring the local radiation environment in near-Earth space and in lunar space. RADOM measured the total absorbed dose and spectrum of the deposited energy from high energy particles in near-Earth space, en-route and in lunar orbit. RADOM was the first experiment to be switched on soon after the launch of Chandrayaan-1 and was operational till the end of the mission. This paper summarizes the observations carried out by RADOM during the entire life time of the Chandrayaan-1 mission and some the salient results.

قيم البحث

اقرأ أيضاً

We present the effects of cosmic rays on the detectors onboard the Herschel satellite. We describe in particular the glitches observed on the two types of cryogenic far- infrared bolometer inside the two instruments PACS and SPIRE. The glitch rates a re also reported since the launch together with the SREM radiation monitors aboard Herschel and Planck spacecrafts. Both have been injected around the Lagrangian point L2 on May 2009. This allows probing the radiation environment around this orbit. The impacts on the observation are finally summarized.
In the last few years many exoplanets in the habitable zone (HZ) of M-dwarfs have been discovered, but the X-ray/UV activity of cool stars is very different from that of our Sun. The high-energy radiation environment influences the habitability, play s a crucial role for abiogenesis, and impacts planetary atmospheres. LHS 1140b is a super-Earth-size planet orbiting in the HZ of LHS 1140, an M4.5 dwarf at ~15 parsecs. We present the results of a Swift X-ray/UV observing campaign. We characterize for the first time the X-ray/UV radiation environment of LHS 1140b. We measure the variability of the near ultraviolet (NUV) flux and estimate the far ultraviolet (FUV) flux with a correlation between FUV and NUV flux of a sample of low-mass stars in the GALEX archive. We highlight the presence of a dominating X-ray source close to the J2000 coordinates of LHS 1140, characterize its spectrum, and derive an X-ray flux upper limit for LHS 1140. We find that this contaminant source could have influenced the previously estimated spectral energy distribution. No significant variation of the NUV flux of LHS 1140 is found over 3 months, and we do not observe any flare during the 38 ks on the target. LHS 1140 is in the 25th percentile of least variable M4-M5 dwarfs of the GALEX sample. Analyzing the UV flux experienced by the HZ planet LHS 1140b, we find that outside the atmosphere it receives a NUV flux <2% with respect to that of the present-day Earth, while the FUV/NUV ratio is ~100-200 times higher. This represents a lower limit to the true FUV/NUV ratio since the GALEX FUV band does not include Lyman-alpha, which dominates the FUV output of low-mass stars. This is a warning for future searches for biomarkers, which must take into account this high ratio. The relatively low level and stability of UV flux experienced by LHS 1140b should be favorable for its present-day habitability.
159 - Philipp Oleynik 2019
RADMON is a small radiation monitor designed and assembled by students of the University of Turku and the University of Helsinki. It is flown on-board Aalto-1, a 3-unit CubeSat in low Earth orbit at about 500 km altitude. The detector unit of the ins trument consists of two detectors, a Si solid-state detector and a CsI(Tl) scintillator, and utilizes the textDelta{E}-E technique to determine the total energy and species of each particle hitting the detector. We present the results of the on-ground and in-flight calibration campaigns of the instrument, as well as the characterization of its response through extensive simulations within the Geant4 framework. The overall energy calibration margin achieved is about 5%. The full instrument response to protons and electrons is presented and the issue of proton contamination of the electron channels is quantified and discussed.
138 - Takashi Ito , Renu Malhotra 2009
Recent lunar crater studies have revealed an asymmetric distribution of rayed craters on the lunar surface. The asymmetry is related to the synchronous rotation of the Moon: there is a higher density of rayed craters on the leading hemisphere compare d with the trailing hemisphere. Rayed craters represent generally the youngest impacts. The purpose of this paper is to test the hypotheses that (i) the population of Near-Earth asteroids (NEAs) is the source of the impactors that have made the rayed craters, and (ii) that impacts by this projectile population account quantitatively for the observed asymmetry. We carried out numerical simulations of the orbital evolution of a large number of test particles representing NEAs in order to determine directly their impact flux on the Moon. The simulations were done in two stages. In the first stage we obtained encounter statistics of NEAs on the Earths activity sphere. In the second stage we calculated the direct impact flux of the encountering particles on the surface of the Moon; the latter calculations were confined within the activity sphere of the Earth. A steady-state synthetic population of NEAs was generated from a debiased orbital distribution of the known NEAs. We find that the near-Earth asteroids do have an asymmetry in their impact flux on the Moon: apex-to-antapex ratio of 1.32 +/- 0.01. However, the observed rayed crater distributions asymmetry is significantly more pronounced: apex-to-antapex ratio of 1.65 +/- 0.16. Our results suggest the existence of an undetected population of slower (low impact velocity) projectiles, such as a population of objects nearly coorbiting with Earth; more observational study of young lunar craters is needed to secure this conclusion.
The lunar South pole likely contains significant amounts of water in the permanently shadowed craters there. Extracting this water for life support at a lunar base or to make rocket fuel would take large amounts of power, of order Gigawatts. A natura l place to obtain this power are the Peaks of Eternal Light, that lie a few kilometers away on the crater rims and ridges above the permanently shadowed craters. The amount of solar power that could be captured depends on how tall a tower can be built to support the photovoltaic panels. The low gravity, lack of atmosphere, and quiet seismic environment of the Moon suggests that towers could be built much taller than on Earth. Here we look at the limits to building tall concrete towers on the Moon. We choose concrete as the capital cost of transporting large masses of iron or carbon fiber to the Moon is presently so expensive that profitable operation of a power plant is unlikely. Concrete instead can be manufactured in situ from the lunar regolith. We find that, with minimum wall thicknesses (20 cm), towers up to several kilometers tall are stable. The mass of concrete needed, however, grows rapidly with height, from $sim$ 760 mt at 1 km to $sim$ 4,100 mt at 2 km to $sim 10^5$ mt at 7 km and $sim 10^6$ mt at 17 km.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا