ترغب بنشر مسار تعليمي؟ اضغط هنا

Parent formulation at the Lagrangian level

44   0   0.0 ( 0 )
 نشر من قبل Maxim Grigoriev
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maxim Grigoriev




اسأل ChatGPT حول البحث

The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV--BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang--Mills theory, and gravity.


قيم البحث

اقرأ أيضاً

We argue that the scattering of gravitons in ordinary Einstein gravity possesses a hidden conformal symmetry at tree level in any number of dimensions. The presence of this conformal symmetry is indicated by the dilaton soft theorem in string theory, and it is reminiscent of the conformal invariance of gluon tree-level amplitudes in four dimensions. To motivate the underlying prescription, we demonstrate that formulating the conformal symmetry of gluon amplitudes in terms of momenta and polarization vectors requires manifest reversal and cyclic symmetry. Similarly, our formulation of the conformal symmetry of graviton amplitudes relies on a manifestly permutation symmetric form of the amplitude function.
Using the well-known low-energy effective Lagrangian of QCD --valid for small (non-vanishing) quark masses and a large number of colors-- we study in detail the regions of parameter space where $CP$ is spontaneously broken/unbroken for a vacuum angle $theta= pi$. In the $CP$-broken region there are first order phase transitions as one crosses $theta=pi$, while on the (hyper)surface separating the two regions, there are second order phase transitions signaled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the $CP$ spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised when the QCD parameters fall in the above mentioned $CP$-broken region, in spite of the fact that the axion solves the strong-$CP$ problem. These latter results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.
The naive double-copy of (multi) loop amplitudes involving massive matter coupled to gauge theories will generically produce amplitudes in a gravitational theory that contains additional contributions from propagating antisymmetric tensor and dilaton states even at tree-level. We present a graph-based approach that combines the method of maximal cuts with double-copy construction to offer a systematic framework to isolate the pure Einstein-Hilbert gravitational contributions through loop level. Indeed this allows for a bootstrap of pure-gravitational results from the double-copy of massive scalar-QCD. We apply this to construct the novel result of the D-dimensional one-loop five-point QFT integrand relevant in the classical limit to generating observables associated with the radiative effects of massive black-hole scattering via pure Einstein-Hilbert gravity.
We study a possibility of Lagrangian formulation for free higher spin bosonic totally symmetric tensor field on the background manifold characterizing by the arbitrary metric, vector and third rank tensor fields in framework of BRST approach. Assumin g existence of massless and flat limits in the Lagrangian and using the most general form of the operators of constraints we show that the algebra generated by these operators will be closed only for constant curvature space with no nontrivial coupling to the third rank tensor and the strength of the vector fields. This result finally proves that the consistent Lagrangian formulation at the conditions under consideration is possible only in constant curvature Riemann space.
Knotted solutions to electromagnetism are investigated as an independent subsector of the theory. We write down a Lagrangian and a Hamiltonian formulation of Batemans construction for the knotted electromagnetic solutions. We introduce a general defi nition of the null condition and generalize the construction of Maxwells theory to massless free complex scalar, its dual two form field, and to a massless DBI scalar. We set up the framework for quantizing the theory both in a path integral approach, as well as the canonical Dirac method for a constrained system. We make several observations about the semi-classical quantization of systems of null configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا