ترغب بنشر مسار تعليمي؟ اضغط هنا

Separation of Target Structure and Medium Propagation Effects in High-Harmonic Generation

191   0   0.0 ( 0 )
 نشر من قبل Cheng Jin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate high-harmonic generation (HHG) by intense infrared lasers in atoms and molecules with the inclusion of macroscopic propagation of the harmonics in the gas medium. We show that the observed experimental spectra can be accurately reproduced theoretically despite that HHG spectra are sensitive to the experimental conditions. We further demonstrate that the simulated (or experimental) HHG spectra can be factored out as a product of a macroscopic wave packet and the photo-recombination transition dipole moment where the former depends on the laser properties and the experimental conditions, while the latter is the property of the target only. The factorization makes it possible to extract target structure from experimental HHG spectra, and for ultrafast dynamic imaging of transient molecules.

قيم البحث

اقرأ أيضاً

140 - X. J. Xie , R. H. Xu , S. J. Yu 2021
We study the effect of Coulomb potential on high-order harmonic generation (HHG) numerically and analytically. We focus on the influence of Coulomb potential on emission times of HHG associated with specific electron trajectories. By using a numerica l procedure based on numerical solution of time-dependent Schr{o}dinger equation (TDSE) in three dimensions, we extract the HHG emission times both for long and short electron trajectories. We compare TDSE predictions with those of a Coulomb-modified model arising from strong-field approximation (SFA). We show that the Coulomb effect induces earlier HHG emission times than those predicted by the general SFA model without considering the Coulomb potential. In particular, this effect influences differently on long and short electron trajectories and is more remarkable for low-energy harmonics than high ones. It also changes the HHG amplitudes for long and short electron trajectories. We validate our discussions with diverse laser parameters and forms of Coulomb potential. Our results strongly support a four-step model of HHG.
Using dynamical Hartree-Fock mean-field theory, we study the high-harmonic generation (HHG) in the fullerene molecules C$_{60}$ and C$_{70}$ under strong pump wave driving. We consider a strong-field regime and show that the output harmonic radiation exhibits multiple plateaus, whose borders are defined by the molecular excitonic lines and cutoff energies within each plateau scale linearly with the field strength amplitude. In contrast to atomic cases for the fullerene molecule, with the increase of the pump wave photon energy the cutoff harmonic energy is increased. We also show that with the increase of the electron-electron interaction energy overall the HHG rate is suppressed. We demonstrate that the C$_{70}$ molecule shows richer HHG spectra and a stronger high-harmonic intensity than the C$_{60}$.
98 - M. Aladi , R. Bolla , P. Racz 2015
We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certa in value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.
312 - D. Shafir , B. Fabre , J. Higuet 2013
Recollision processes provide direct insight into the structure and dynamics of electronic wave functions. However, the strength of the process sets its basic limitations - the interaction couples numerous degrees of freedom. In this Letter we decoup le the basic steps of the process and resolve the role of the ionic potential which is at the heart of a broad range of strong field phenomena. Specifically, we measure high harmonic generation from argon atoms. By manipulating the polarization of the laser field we resolve the vectorial properties of the interaction. Our study shows that the ionic core plays a significant role in all steps of the interaction. In particular, Coulomb focusing induces an angular deflection of the electrons before recombination. A complete spatiospectral analysis reveals the influence of the potential on the spatiotemporal properties of the emitted light.
We investigate the role of excited states in High-order Harmonic Generation by studying the spectral, spatial and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the po pulation of excited states can lead either to direct XUV emission through Free Induction Decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا