ترغب بنشر مسار تعليمي؟ اضغط هنا

The Butterfly Effect: Correlations Between Modeling in Nuclear-Particle Physics and Socioeconomic Factors

64   0   0.0 ( 0 )
 نشر من قبل Markus Kuster
 تاريخ النشر 2010
والبحث باللغة English
 تأليف M. G. Pia




اسأل ChatGPT حول البحث

A scientometric analysis has been performed on selected physics journals to estimate the presence of simulation and modeling in physics literature in the past fifty years. Correlations between the observed trends and several social and economical factors have been evaluated.


قيم البحث

اقرأ أيضاً

We discuss eigenstate correlations for ergodic, spatially extended many-body quantum systems, in terms of the statistical properties of matrix elements of local observables. While the eigenstate thermalization hypothesis (ETH) is known to give an exc ellent description of these quantities, the butterfly effect implies structure beyond ETH. We determine the universal form of this structure at long distances and small eigenvalue separations for Floquet systems. We use numerical studies of a Floquet quantum circuit to illustrate both the accuracy of ETH and the existence of our predicted additional correlations.
This extended abstract briefly summarizes ongoing research activity on the evaluation and experimental validation of physics methods for photon and electron transport. The analysis includes physics models currently implemented in Geant4 as well as mo deling methods used in other Monte Carlo codes, or not yet considered in general purpose Monte Carlo simulation systems. The validation of simulation models is performed with the support of rigorous statistical methods, which involve goodness-of-fit tests followed by categorical analysis. All results are quantitative, and are fully documented.
This report is an outcome of the workshop AI for Nuclear Physics held at Thomas Jefferson National Accelerator Facility on March 4-6, 2020. The workshop brought together 184 scientists to explore opportunities for Nuclear Physics in the area of Artif icial Intelligence. The workshop consisted of plenary talks, as well as six working groups. The report includes the workshop deliberations and additional contributions to describe prospects for using AI across Nuclear Physics research.
137 - Rodger I. Thompson 2017
The observed constraints on the variability of the proton to electron mass ratio $mu$ and the fine structure constant $alpha$ are used to establish constraints on the variability of the Quantum Chromodynamic Scale and a combination of the Higgs Vacuu m Expectation Value and the Yukawa couplings. Further model dependent assumptions provide constraints on the Higgs VEV and the Yukawa couplings separately. A primary conclusion is that limits on the variability of dimensionless fundamental constants such as $mu$ and $alpha$ provide important constraints on the parameter space of new physics and cosmologies.
We outline the opportunities to study with high precision the interface between nuclear and particle physics, which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا