ﻻ يوجد ملخص باللغة العربية
The Feynman checkerboard problem is an interesting path integral approach to the Dirac equation in `1+1 dimensions. I compare two approaches reported in the literature and show how they may be reconciled. Some physical insights may be gleaned from this approach.
The Cauchy problem is studied for the self-adjoint and non-self-adjoint Schroedinger equations. We first prove the existence and uniqueness of solutions in the weighted Sobolev spaces. Secondly we prove that if potentials are depending continuously a
This is an introduction to the geometry of compact Riemann surfaces, largely following the books Farkas-Kra, Fay, Mumford Tata lectures. 1) Defining Riemann surfaces with atlases of charts, and as locus of solutions of algebraic equations. 2) Space o
In these notes we discuss the self-reducibility property of the Weil representation. We explain how to use this property to obtain sharp estimates of certain higher-dimensional exponential sums which originate from the theory of quantum chaos. As a r
In this paper, we correct an inaccurate result of previous works on the Feynman propagator in position space of a free Dirac field in (3+1)-dimensional spacetime, and we derive the generalized analytic formulas of both the scalar Feynman propagator a
The fundamental solution of the Schrodinger equation for a free particle is a distribution. This distribution can be approximated by a sequence of smooth functions. It is defined for each one of these functions, a complex measure on the space of path