ترغب بنشر مسار تعليمي؟ اضغط هنا

Are there cool-core clusters at high-redshift? Chandra results and prospects with WFXT

390   0   0.0 ( 0 )
 نشر من قبل Joana Santos
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joana S. Santos




اسأل ChatGPT حول البحث

In this contribution we trace the evolution of cool-core clusters out to z~1.3 using high-resolution Chandra data of three representative cluster samples spanning different redshift ranges. Our analysis is based on the measurement of the surface brightness (SB) concentration, c_SB, which strongly anti-correlates with the central cooling time and allows us to characterize the cool-core strength in low S/N data. We confirm a negative evolution in the fraction of cool-core clusters with redshift, in particular for very strong cool-cores. Still, we find evidence for a large population of well formed cool-cores at z ~ 1. This analysis is potentially very effective in constraining the nature and the evolution of the cool-cores, once large samples of high-z clusters will be available. In this respect, we explore the potential of the proposed mission Wide Field X-ray Telescope (WFXT) to address this science case. We conclude that WFXT provides the best trade-off of angular resolution, sensitivity and covered solid angle in order to discover and fully characterize the cool-core cluster population up to z=1.5.



قيم البحث

اقرأ أيضاً

90 - Joana S. Santos 2008
We investigate the detection of Cool Cores (CCs) in the distant galaxy cluster population, with the purpose of measuring the CC fraction out to redshift 0.7 < z < 1.4. Using a sample of nearby clusters spanning a wide range of morphologies, we define criteria to characterize cool cores, which are applicable to the high redshift sample. We analyzed azimuthally averaged surface brightness (SB) profiles using the known scaling relations and fitted single/double beta models to the data. Additionally, we measured a surface brightness concentration, c_SB, as the ratio of the peak over the ambient SB. To verify that this is an unbiased parameter as a function of redshift, we developed a model independent cloning technique to simulate the nearby clusters as they would appear at the same redshifts and luminosities as those in the distant sample. A more physical parameterization of CC presence is obtained by computing the cooling time at a radius of 20 kpc from the cluster center. The distribution of the SB concentration and the stacked radial profiles of the low-z sample, combined with published information on the CC properties of these clusters, show 3 degrees of SB cuspiness: non-CC, moderate and strong CC. The same analysis applied to the high-z clusters reveals two regimes: non-CC and moderate CC. The cooling time distribution corroborates this result by showing a strong negative correlation with c_SB. Our analysis indicates a significant fraction of distant clusters harboring a moderate CC out to z=1.4, similar to those found in the local sample. The absence of strong cooling which we report is likely linked with a higher merger rate expected at redshift z > 0.7, and should also be related with the shorter age of distant clusters, implying less time to develop a cool core.
194 - Heng Yu , Paolo Tozzi (2 2011
The ubiquitous presence of the Fe line complex in the X-ray spectra of galaxy clusters offers the possibility of measuring their redshift without resorting to spectroscopic follow-up observations. In this paper we assess the accuracy with which the r edshift of galaxy clusters can be recovered from an X-ray spectral analysis of Chandra archival data. This study indicates a strategy to build large surveys of clusters whose identification and redshift measurement are both based on X-ray data alone. We apply a blind search for K--shell and L--shell Fe line complex in X-ray cluster spectra using Chandra archival observations of galaxy clusters. The Fe line in the ICM spectra can be detected by simply analyzing the C-statistics variation $Delta C_{stat}$ as a function of the redshift parameter. We repeat the measurement under different conditions, and compare the X-ray derived redshift $z_X$ with the one obtained by means of optical spectroscopy $z_o$. We explore how a number of priors on metallicity and luminosity can be effectively used to reduce catastrophic errors. The $Delta C_{stat}$ provides the most efficient means for discarding wrong redshift measures and to estimate the actual error on $z_X$. We identify a simple and efficient procedure for optimally measuring the redshifts from the X-ray spectral analysis of clusters of galaxies. When this procedure is applied to mock catalogs extracted from high sensitivity, wide-area cluster surveys, such as those proposed with Wide Field X-ray Telescope (WFXT) mission, it is possible to obtain a complete samples of X-ray clusters with reliable redshift measurements, thus avoiding time-consuming optical spectroscopic observations. This methodology will make it possible to trace cosmic growth by studying the evolution of the cluster mass function directly using X-ray data.
In this work we propose a new diagnostic to segregate cool core (CC) clusters from non-cool core (NCC) clusters by studying the two-dimensional power spectra of the X-ray images observed with the Chandra X-ray observatory. Our sample contains 41 memb ers ($z=0.01sim 0.54$), which are selected from the Chandra archive when a high photon count, an adequate angular resolution, a relatively complete detector coverage, and coincident CC-NCC classifications derived with three traditional diagnostics are simultaneously guaranteed. We find that in the log-log space the derived image power spectra can be well represented by a constant model component at large wavenumbers, while at small wavenumbers a power excess beyond the constant component appears in all clusters, with a clear tendency that the excess is stronger in CC clusters. By introducing a new CC diagnostic parameter, i.e., the power excess index (PEI), we classify the clusters in our sample and compare the results with those obtained with three traditional CC diagnostics. We find that the results agree with each other very well. By calculating the PEI values of the simulated clusters, we find that the new diagnostic works well at redshifts up to 0.5 for intermediately sized and massive clusters with a typical Chandra or XMM pointing observation. The new CC diagnostic has several advantages over its counterparts, e.g., it is free of the effects of the commonly seen centroid shift of the X-ray halo caused by merger event, and the corresponding calculation is straightforward, almost irrelevant to the complicated spectral analysis.
445 - Joana S. Santos 2011
Using the deepest (370 ksec) Chandra observation of a high-redshift galaxy cluster, we perform a detailed characterization of the intra-cluster medium (ICM) of WARPJ1415.1+3612 at z=1.03. We also explore the connection between the ICM core properties and the radio/optical properties of the brightest cluster galaxy (BCG). We perform a spatially resolved analysis of the ICM to obtain temperature, metallicity and surface brightness profiles. Using the deprojected temperature and density profiles we accurately derive the cluster mass at different overdensities. In addition to the X-ray data, we use archival radio VLA imaging and optical GMOS spectroscopy of the central galaxy to investigate the feedback between the central galaxy and the ICM. The X-ray spectral analysis shows a significant temperature drop towards the cluster center, with a projected value of Tc = 4.6 pm 0.4 keV, and a remarkably high central iron abundance peak, Zc= 3.6 Zsun. The central cooling time is shorter than 0.1 Gyr and the entropy is equal to 9.9 keV cm2. We detect a strong [OII] emission line in the optical spectra of the BCG with an equivalent width of -25 AA, for which we derive a star formation rate within the range 2 - 8 Msun/yr. The VLA data reveals a central radio source coincident with the BCG and a faint one-sided jet-like feature with an extent of 80 kpc. The analysis presented shows that WARPJ1415 has a well developed cool core with ICM properties similar to those found in the local Universe. Its properties and the clear sign of feedback activity found in the central galaxy in the optical and radio bands, show that feedback processes are already established at z~1. In addition, the presence of a strong metallicity peak shows that the central regions have been promptly enriched by star formation processes in the central galaxy already at z > 1.
We investigate the thermodynamic and chemical structure of the intracluster medium (ICM) across a statistical sample of 20 galaxy clusters analysed with the Chandra X-ray satellite. In particular, we focus on the scaling properties of the gas density , metallicity and entropy and the comparison between clusters with and without cool cores (CCs). We find marked differences between the two categories except for the gas metallicity, which declines strongly with radius for all clusters (Z ~ r^{-0.31}), outside ~0.02 r500. The scaling of gas entropy is non-self-similar and we find clear evidence of bimodality in the distribution of logarithmic slopes of the entropy profiles. With only one exception, the steeper sloped entropy profiles are found in CC clusters whereas the flatter slope population are all non-CC clusters. We explore the role of thermal conduction in stabilizing the ICM and conclude that this mechanism alone is sufficient to balance cooling in non-CC clusters. However, CC clusters appear to form a distinct population in which heating from feedback is required in addition to conduction. Under the assumption that non-CC clusters are thermally stabilized by conduction alone, we find the distribution of Spitzer conduction suppression factors, f_c, to be log-normal, with a log (base 10) mean of -1.50+/-0.03 (i.e. f_c=0.032) and log standard deviation 0.39+/-0.02.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا