ترغب بنشر مسار تعليمي؟ اضغط هنا

ROBO: a Model and a Code for the Study of the Interstellar Medium

88   0   0.0 ( 0 )
 نشر من قبل Tommaso Grassi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Grassi




اسأل ChatGPT حول البحث

We present ROBO, a model and its companion code for the study of the interstellar medium (ISM). The aim is to provide an accurate description of the physical evolution of the ISM and to set the ground for an ancillary tool to be inserted in NBody-Tree-SPH (NB-TSPH) simulations of large scale structures in cosmological context or of the formation and evolution of individual galaxies. The ISM model consists of gas and dust. The gas chemical composition is regulated by a network of reactions that includes a large number of species (hydrogen and deuterium based molecules, helium, and metals). New reaction rates for the charge transfer in $mathrm H^+$ and $mathrm H_2$ collisions are presented. The dust contains the standard mixture of carbonaceous grains (graphite grains and PAHs) and silicates of which the model follows the formation and destruction by several processes. The model takes into account an accurate treatment of the cooling process, based on several physical mechanisms, and cooling functions recently reported in the literature. The model is applied to a wide range of the input parameters and the results for important quantities describing the physical state of the gas and dust are presented. The results are organized in a database suited to the artificial neural networks (ANNs). Once trained, the ANNs yield the same results obtained by ROBO, with great accuracy. We plan to develop ANNs suitably tailored for applications to NB-TSPH simulations of cosmological structures and/or galaxies.



قيم البحث

اقرأ أيضاً

E(A+M)PEC traces the ionization structure, cooling and emission spectra of plasmas. It is written in OpenCL, runs in NVIDIA Graphics Processor Units and can be coupled to any HD or MHD code to follow the dynamical and thermal evolution of any plasma in, e.g., the interstellar medium (ISM).
We apply Gaussian smoothing to obtain mean density, velocity, magnetic and energy density fields in simulations of the interstellar medium based on three-dimensional magnetohydrodynamic equations in a shearing box $1times1times2 , rm{kpc}$ in size. U nlike alternative averaging procedures, such as horizontal averaging, Gaussian smoothing retains the three-dimensional structure of the mean fields. Although Gaussian smoothing does not obey the Reynolds rules of averaging, physically meaningful central statistical moments are defined as suggested by Germano (1992). We discuss methods to identify an optimal smoothing scale $ell$ and the effects of this choice on the results. From spectral analysis of the magnetic, density and velocity fields, we find a suitable smoothing length for all three fields, of $ell approx 75 , rm{pc}$. We discuss the properties of third-order statistical moments in fluctuations of kinetic energy density in compressible flows and suggest their physical interpretation. The mean magnetic field, amplified by a mean-field dynamo, significantly alters the distribution of kinetic energy in space and between scales, reducing the magnitude of kinetic energy at intermediate scales. This intermediate-scale kinetic energy is a useful diagnostic of the importance of SN-driven outflows.
We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high- resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS and SHERPA.
107 - Franck Le Petit 2006
We present the revised ``Meudon model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.
We use a set of magnetohydrodynamics (MHD) simulations of fully-developed (driven) turbulence to study the anisotropy in the velocity field that is induced by the presence of the magnetic field. In our models we study turbulence characterized by soni c Mach numbers M_s from 0.7 to 7.5, and Alfven Mach numbers M_A from 0.4 to 7.7. These are used to produce synthetic observations (centroid maps) that are analyzed. To study the effect of large scale density fluctuations and of white noise we have modified the density fields and obtained new centroid maps, which are analyzed. We show that restricting the range of scales at which the anisotropy is measured makes the method robust against such fluctuations. We show that the anisotropy in the structure function of the maps reveals the direction of the magnetic field for M_A lesssim 1.5, regardless of the sonic Mach number. We found that the degree of anisotropy can be used to determine the degree of magnetization (i.e. M_A) for M_A lesssim 1.5. To do this, one needs an additional measure of the sonic Mach number and an estimate of the LOS magnetic field, both feasible by other techniques, offering a new opportunity to study the magnetization state of the interstellar medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا