ﻻ يوجد ملخص باللغة العربية
This paper reports a detailed analysis of the optical light curve of PSR B0540-69, the second brightest pulsar in the visible band, obtained in 2009 (Jan. 18 and 20, and Dec. 14, 15, 16, 18) with the very high speed photon counting photometer Iqueye mounted at the ESO 3.6-m NTT in La Silla (Chile). The optical light curve derived by Iqueye shows a double structure in the main peak, with a raising edge steeper than the trailing edge. The double peak can be fitted by two Gaussians with the same height and FWHM of 13.3 and 15.5 ms respectively. Our new values of spin frequencies allow to extend by 3.5 years the time interval over which a reliable estimate of frequency first and second derivatives can be performed. A discussion of implications on the braking index and age of the pulsar is carried out. A value of n = 2.087 +/- 0.007 for the overall braking index from 1987 to 2009 is derived. The braking index corrected age is confirmed around 1700 years.
The study of the younger, and brighter, pulsars is important to understand the optical emission properties of isolated neutron stars. PSRB0540-69, the second brightest (V~22) optical pulsar, is obviously a very interesting target for these investigat
It is believed that an isolated pulsar loses its rotational energy mainly through a relativistic wind consisting of electrons, positrons and possibly Poynting fluxcite{Pacini1973,Rees1974,Kennel1984}. As it expands, this wind may eventually be termin
We present timing solutions and spin properties of the young pulsar PSR B0540-69 from analysis of 15.8 yr of data from the Rossi X-Ray Timing Explorer. We perform a partially phase-coherent timing analysis in order to mitigate the pronounced effects
In Dec. 2011 PSR B0540-69 experienced a spin-down rate transition (SRT), after which the spin-down power of the pulsar increased by ~36%. About 1000 days after the SRT, the X-ray luminosity of the associated pulsar wind nebula (PWN) was found to brig
PSR B0540-69 is a young pulsar in the Large Magellanic Cloud that has similar properties with respect to the Crab Pulsar, and is embedded in a Pulsar Wind Nebula. We have analyzed the complete archival RXTE dataset of observations of this source, tog