ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations

89   0   0.0 ( 0 )
 نشر من قبل John M. Campbell
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform an analytic calculation of the one-loop amplitude for the W-boson mediated process 0 to d u-bar Q Q-bar l-bar l, retaining the mass for the quark Q. The momentum of each of the massive quarks is expressed as the sum of two massless momenta and the corresponding heavy quark spinor is expressed as a sum of two massless spinors. Using a special choice for the heavy quark spinors we obtain analytic expressions for the one-loop amplitudes which are amenable to fast numerical evaluation. The full next-to-leading order (NLO) calculation of hadron+hadron to W(to e nu) b b-bar with massive b-quarks is included in the program MCFM. A comparison is performed with previous published work.


قيم البحث

اقرأ أيضاً

We calculate the Next-to-Leading Order (NLO) QCD corrections to W-b-bbar production including full bottom-quark mass effects. We study the impact of NLO QCD corrections on the total cross section and invariant mass distribution of the bottom-quark je t pair at the Fermilab Tevatron p-pbar collider. We perform a detailed comparison with a calculation that considers massless bottom quarks. We find that neglecting bottom-quark mass effects overestimates the NLO total cross-section for W-b-bbar production at the Tevatron by about 8% independent of the choice of renormalization and factorization scale.
We present the QCD radiative corrections to the full off-shell $rm tbar{t}W^+$ production, considering a final state with three charged leptons, two b jets and missing energy. All interferences, off-shell effects and spin correlations are included in the calculation. Beyond presenting integrated and differential results for the full off-shell process, we compare them with those obtained applying a double-pole approximation to the virtual corrections.
We present results for the next-to-leading order QCD corrections to the production and semi-leptonic decays of a top quark pair in hadron collisions, retaining all spin correlations. To evaluate the virtual corrections, we employ generalized D-dimens ional unitarity. The computation is implemented in a numerical program which allows detailed studies of ttbar-related observables at the Tevatron and the LHC.
We present a complete next-to-leading order (NLO) calculation for the total cross section of inclusive Higgs pair production via bottom-quark fusion ($bbar{b} to hh$) at the CERN Large Hadron Collider (LHC) in the Standard Model. The NLO QCD correcti ons lead to less dependence on the renormalization scale ($mu_R$) and the factorization scale ($mu_F$) than the leading-order (LO) cross section, and they significantly increase the LO cross section. The rate for inclusive Higgs pair production is small in the Standard Model, but can be large in models with enhanced couplings of the $b$ quark to the Higgs bosons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا