ﻻ يوجد ملخص باللغة العربية
Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate {it directly}, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.
Using a braid group representation based on the Temperley-Lieb algebra, we construct braid quantum gates that could generate entangled $n$-partite $D$-level qudit states. $D$ different sets of $D^ntimes D^n$ unitary representation of the braid group
The braid group appears in many scientific fields and its representations are instrumental in understanding topological quantum algorithms, topological entropy, classification of manifolds and so on. In this work, we study planer diagrams which are K
The hamiltonian of the $N$-state superintegrable chiral Potts (SICP) model is written in terms of a coupled algebra defined by $N-1$ types of Temperley-Lieb generators. This generalises a previous result for $N=3$ obtained by J. F. Fjelstad and T. Mr
We discuss the analogy between topological entanglement and quantum entanglement, particularly for tripartite quantum systems. We illustrate our approach by first discussing two clearly (topologically) inequivalent systems of three-ring links: The Bo
We present a method of defining projectors in the virtual Temperley-Lieb algebra, that generalizes the Jones-Wenzl projectors in Temperley-Lieb algebra. We show that the projectors have similar properties with the Jones-Wenzl projectors, and contain