ترغب بنشر مسار تعليمي؟ اضغط هنا

Indistinguishable near infra-red single photons from an individual organic molecule

71   0   0.0 ( 0 )
 نشر من قبل Jean-Baptiste Trebbia
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using the zero-phonon line emission of an individual organic molecule, we realized a source of indistinguishable single photons in the near infrared. A Hong-Ou-Mandel interference experiment is performed and a two-photon coalescence probability of higher than 50% at 2 K is obtained. The contribution of the temperature-dependent dephasing processes to the two-photon interference contrast is studied. We show that the molecule delivers nearly ideal indistinguishable single photons at the lowest temperatures when the dephasing is nearly lifetime limited. This source is used to generate post-selected polarization-entangled photon pairs, as a test-bench for applications in quantum information.

قيم البحث

اقرأ أيضاً

Using the zero-phonon line (ZPL) emission of a single molecule, we realized a triggered source of near-infra-red (lambda=785 nm) single photons at a high repetition rate. A Weierstrass solid immersion lens is used to image single molecules with an op tical resolution of 300 nm (~0.4*lambda) and a high collection efficiency. Because dephasing of the transition dipole due to phonons vanishes at liquid helium temperatures, our source is attractive for the efficient generation of single indistinguishable photons.
We generate indistinguishable photons from a semiconductor diode containing a InAs/GaAs quantum dot. Using an all-electrical technique to populate and control a single-photon emitting state we filter-out dephasing by Stark-shifting the emission energ y on timescales below the dephasing time of the state. Mixing consecutive photons on a beam-splitter we observe two-photon interference with a visibility of 64%.
A key ingredient for quantum photonic technologies is an on-demand source of indistinguishable single photons. State-of-the-art indistinguishable single-photon sources typically employ resonant excitation pulses with fixed repetition rates, creating a string of single photons with predetermined arrival times. However, in future applications, an independent electronic signal from a larger quantum circuit or network will trigger the generation of an indistinguishable photon. Further, operating the photon source up to the limit imposed by its lifetime is desirable. Here, we report on the application of a true on-demand approach in which we can electronically trigger the precise arrival time of a single photon as well as control the excitation pulse duration based on resonance fluorescence from a single InAs/GaAs quantum dot. We investigate in detail the effect of the finite duration of an excitation $pi$ pulse on the degree of photon antibunching. Finally, we demonstrate that highly indistinguishable single photons can be generated using this on-demand approach, enabling maximum flexibility for future applications.
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single-collective excitation that can be coherently retrieved as a quantum field. We observe a single-transverse-mode efficiency up to 0.18(2), $g^{(2)}=2.0(1.5)times10^{-4}$, and indistinguishability of 0.982(7), making this system promising for scalable quantum information applications. Accounting for losses, we infer a generation probability up to 0.40(4). Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency. Finally, we introduce metrics to benchmark the performance of on-demand single-photon sources.
89 - Hui Wang , Z.-C. Duan , Y.-H. Li 2016
By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of a thousand of near transform-limited single photons with high mutual indistinguishability. Hong-Ou-Mandel interference of two photons are me asured as a function of their emission time separation varying from 13 ns to 14.7 {mu}s, where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at time scale of 0.7 {mu}s. Temporal and spectral analysis reveal the pulsed resonance fluorescence single photons are close to transform limit, which are readily useful for multi-photon entanglement and interferometry experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا