ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of two-phonon bound states in ZnTe

192   0   0.0 ( 0 )
 نشر من قبل Jianbo Hu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A coherent two-phonon bound state has been impulsively generated in ZnTe(110) via second-order Raman scattering in the time domain for the first time. The two-phonon bound state, composed of two anticorrelated in wave vector acoustic phonons, exhibits full {Gamma}1 symmetry and has energy higher than the corresponding 2TA(X) overtone. By suppressing two-phonon fluctuations with a double-pulse excitation, the coexistence of coherently excited bound and unbound two-phonon states has been demonstrated.



قيم البحث

اقرأ أيضاً

We present direct experimental observation of exciton-phonon bound states in the photoluminescence excitation spectra of isolated single walled carbon nanotubes in aqueous suspension. The photoluminescence excitation spectra from several distinct sin gle-walled carbon nanotubes show the presence of at least one sideband related to the tangential modes, lying {200 meV} above the main absorption/emission peak. Both the energy position and line shapes of the sidebands are in excellent agreement with recent calculations [PRL {bf 94},027402 (2005)] that predict the existence of exciton-phonon bound states, a sizable spectral weight transfer to these exciton-phonon complexes and that the amount of this transfer depends on the specific nanotube structure and diameter. The observation of these novel exciton-phonon complexes is a strong indication that the optical properties of carbon nanotubes have an excitonic nature and also of the central role played by phonons in describing the excitation and recombination mechanisms in carbon nanotubes.
Detection of the metallic Dirac electronic states on the surface of Topological Insulators (TIs) is a tribune for a small number of experimental techniques the most prominent of which is Angle Resolved Photoemission Spectroscopy. However, there is no experimental method showing at atomic scale resolution how the Dirac electrons extend inside TI systems. This is a critical issue in the study of important surface quantum properties, especially topological quasiparticle excitations. Herein, by applying advanced DFT-assisted solid-state 125Te Nuclear Magnetic Resonance on Bi2Te3 nanoplatelets, we succeeded in uncovering the hitherto invisible NMR signals with magnetic shielding influenced by the Dirac electrons, and subsequently showed how Dirac electrons spread and interact with the bulk interior of the nanoplatelets.
More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical rese arch while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we report on the direct observation of two-magnon bound states using in-situ correlation measurements in a one-dimensional Heisenberg spin chain realized with ultracold bosonic atoms in an optical lattice. We observe the quantum walk of free and bound magnon states through time-resolved measurements of the two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single magnon excitations. In our measurements, we also determine the decay time of bound magnons, which is most likely limited by scattering on thermal fluctuations in the system. Our results open a new pathway for studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.
We investigate the ultrafast response of the bismuth (111) surface by means of time resolved photoemission spectroscopy. The direct visualization of the electronic structure allows us to gain insights on electron-electron and electron-phonon interact ion. Concerning electron-electron interaction, it is found that electron thermalization is fluence dependent and can take as much as several hundreds of femtoseconds at low fluences. This behavior is in qualitative agreement with Landaus theory of Fermi liquids but the data show deviations from the behavior of a common 3D degenerate electron gas. Concerning electron-phonon interaction, our data allows us to directly observe the coupling of individual Bloch state to the coherent $A_{1g}$ mode. It is found that surface states are much less coupled to this mode when compared to bulk states. This is confirmed by textit{ab initio} calculations of surface and bulk bismuth.
The optical transition linewidth and emission polarization of single nitrogen-vacancy (NV) centers are measured from 5 K to room temperature. Inter-excited state population relaxation is shown to broaden the zero-phonon line and both the relaxation a nd linewidth are found to follow a T^5 dependence for T up to 100 K. This dependence indicates that the dynamic Jahn-Teller effect is the dominant dephasing mechanism for the NV optical transitions at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا