ﻻ يوجد ملخص باللغة العربية
Using the related form factors from full QCD which recently are available, we provide a comprehensive analysis of the $Lambda_b rightarrow Lambda ell^+ ell^-$ transition in universal extra dimension model in the presence of a single universal extra dimension called the Applequist-Cheng-Dobrescu model. In particular, we analyze some related observables like branching ratio, forward-backward asymmetry, double lepton polarization asymmetries and polarization of the $Lambda$ baryon in terms of compactification radius and corresponding form factors. We present the sensitivity of these observables to the compactification parameter, 1/R up to 1/R=1000 GeV. We also compare the results with those obtained using the form factors from heavy quark effective theory as well as the SM predictions.
Using the responsible form factors calculated via full QCD, we analyze the $Lambda_{b}rightarrow Lambda ell^{+}ell^{-}$ transition in the standard model containing fourth generation quarks (SM4). We discuss effects of the presence of $t$ fourth famil
We work out the semileptonic $Lambda_brightarrow Lambda ell^+ ell^-$ transition in standard as well as different supersymmetric models. In particular, considering the parametrization of the matrix elements entered the low energy effective Hamiltonian
We present the first lattice QCD determination of the $Lambda_b to Lambda^*(1520)$ vector, axial vector, and tensor form factors that are relevant for the rare decays $Lambda_b to Lambda^*(1520)ell^+ell^-$. The lattice calculation is performed in the
We present the first lattice-QCD determination of the form factors describing the semileptonic decays $Lambda_b to Lambda_c^*(2595)ell^-bar{ u}$ and $Lambda_b to Lambda_c^*(2625)ell^-bar{ u}$, where the $Lambda_c^*(2595)$ and $Lambda_c^*(2625)$ are t
Rare $b to sell^+ell^-$ flavour-changing-neutral-current processes provide important tests of the Standard Model of particle physics. Angular observables in exclusive $b to sell^+ell^-$ processes can be particularly powerful as they allow hadronic un