ترغب بنشر مسار تعليمي؟ اضغط هنا

About dual one-dimensional oscillator and Coulomb-like theories

55   0   0.0 ( 0 )
 نشر من قبل Gagik Grigoryan V
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional nonrelativistic quantum dual theories (with oscillator and Coulomb-like potentials) and compare their spectra and the sets of eigenfunctions. We construct all self-adjoint Schrodinger operators for these theories and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying s.a. extensions by (asymptotic) s.a. boundary conditions. Solving spectral problems, we follow the Kreins method of guiding functionals. We show, that there is one to one correspondence between the spectral points of dual theories in the planes energy-coupling constants not only for discrete, but also for continuous spectra.



قيم البحث

اقرأ أيضاً

We consider the system of particles with equal charges and nearest neighbour Coulomb interaction on the interval. We study local properties of this system, in particular the distribution of distances between neighbouring charges. For zero temperature case there is sufficiently complete picture and we give a short review. For Gibbs distribution the situation is more difficult and we present two related results.
A new recursion procedure for deriving renormalized perturbation expansions for the one-dimensional anharmonic oscillator is offered. Based upon the $hbar$-expansions and suitable quantization conditions, the recursion formulae obtained have the same simple form both for ground and excited states and can be easily applied to any renormalization scheme. As an example, the renormalized expansions for the sextic anharmonic oscillator are considered.
The Levi-Civita transformation is applied in the two-dimensional (2D) Dirac and Klein-Gordon (KG) equations with equal external scalar and vector potentials. The Coulomb and harmonic oscillator problems are connected via the Levi-Civita transformatio n. These connections lead to an approach to solve the Coulomb problems using the results of the harmonic oscillator potential in the above-mentioned relativistic systems.
A mapping is obtained relating radial screened Coulomb systems with low screening parameters to radial anharmonic oscillators in N-dimensional space. Using the formalism of supersymmetric quantum mechanics, it is shown that exact solutions of these p otentials exist when the parameters satisfy certain constraints.
67 - G. Levai , B. Konya , Z. Papp 1998
Quantum mechanical models and practical calculations often rely on some exactly solvable models like the Coulomb and the harmonic oscillator potentials. The $D$ dimensional generalized Coulomb potential contains these potentials as limiting cases, th us it establishes a continuous link between the Coulomb and harmonic oscillator potentials in various dimensions. We present results which are necessary for the utilization of this potential as a model and practical reference problem for quantum mechanical calculations. We define a Hilbert space basis, the generalized Coulomb-Sturmian basis, and calculate the Greens operator on this basis and also present an SU(1,1) algebra associated with it. We formulate the problem for the one-dimensional case too, and point out that the complications arising due to the singularity of the one-dimensional Coulomb problem can be avoided with the use of the generalized Coulomb potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا