ﻻ يوجد ملخص باللغة العربية
We explore the possibility of inducing a topological insulator phase in a honeycomb lattice lacking spin-orbit interaction using a metallic (or Fermi gas) environment. The lattice and the metallic environment interact through a density-density interaction without particle tunneling, and integrating out the metallic environment produces a honeycomb sheet with in-plane oscillating long-ranged interactions. We find the ground state of the interacting system in a variational mean-field method and show that the Fermi wave vector, kF, of the metal determines which phase occurs in the honeycomb lattice sheet. This is analogous to the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism in which the metals kF determines the interaction profile as a function of the distance. Tuning kF and the interaction strength may lead to a variety of ordered phases, including a topological insulator and anomalous quantum-hall states with complex next-nearest-neighbor hopping, as in the Haldane and the Kane-Mele model. We estimate the required range of parameters needed for the topological state and find that the Fermi vector of the metallic gate should be of the order of 3Pi/8a (with a being the graphene lattice constant). The net coupling between the layers, which includes screening in the metal, should be of the order of the honeycomb lattice bandwidth. This configuration should be most easily realized in a cold-atoms setting with two interacting Fermionic species.
e provide a detailed analysis of a topological structure of a fermion spectrum in the Hofstadter model with different hopping integrals along the $x,y,z$-links ($t_x=t, t_y=t_z=1$), defined on a honeycomb lattice. We have shown that the chiral gaples
The effect of electron-electron interactions on Dirac fermions, and the possibility of an intervening spin liquid phase between the semi-metal and antiferromagnetic (AF) regimes, has been a focus of intense quantum simulation effort over the last fiv
Single crystal neutron diffraction, inelastic neutron scattering, bulk magnetization measurements, and first-principles calculations are used to investigate the magnetic properties of the honeycomb lattice $rm Tb_2Ir_3Ga_9$. While the $Rln2$ magnetic
Square-root topological insulators are recently-proposed intriguing topological insulators, where the topologically nontrivial nature of Bloch wave functions is inherited from the square of the Hamiltonian. In this paper, we propose that higher-order
We introduce the idea of emergent lattices, where a simple lattice decouples into two weakly-coupled lattices as a way to stabilize spin liquids. In LiZn2Mo3O8, the disappearance of 2/3rds of the spins at low temperatures suggests that its triangular