ترغب بنشر مسار تعليمي؟ اضغط هنا

The visitor from an ancient galaxy: A planetary companion around an old, metal-poor red horizontal branch star

258   0   0.0 ( 0 )
 نشر من قبل Rainer Klement Dr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rainer J. Klement




اسأل ChatGPT حول البحث

We report the detection of a planetary companion around HIP 13044, a metal-poor red horizontal branch star belonging to a stellar halo stream that results from the disruption of an ancient Milky Way satellite galaxy. The detection is based on radial velocity observations with FEROS at the 2.2-m MPG/ESO telescope. The periodic radial velocity variation of P=16.2 days can be distinguished from the periods of the stellar activity indicators. We computed a minimum planetary mass of 1.25 Jupiter masses and an orbital semimajor axis of 0.116 AU for the planet. This discovery is unique in three aspects: First, it is the first planet detection around a star with a metallicity much lower than few percent of the solar value; second, the planet host star resides in a stellar evolutionary stage that is still unexplored in the exoplanet surveys; third, the planetary system HIP 13044 most likely has an extragalactic origin in a disrupted former satellite of the Milky Way.



قيم البحث

اقرأ أيضاً

Using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), we have obtained a direct trigonometric parallax for the nearest metal-poor globular cluster, NGC 6397. Although trigonometric parallaxes have been previously measured for many nearby open clusters, this is the first parallax for an ancient metal-poor population -- one that is used as a fundamental template in many stellar population studies. This high-precision measurement was enabled by the HST/WFC3 spatial-scanning mode, providing hundreds of astrometric measurements for dozens of stars in the cluster and also for Galactic field stars along the same sightline. We find a parallax of 0.418 +/- 0.013 +/- 0.018 mas (statistical, systematic), corresponding to a true distance modulus of 11.89 +/- 0.07 +/- 0.09 mag (2.39 +/- 0.07 +/- 0.10 kpc). The V luminosity at the stellar main sequence turnoff implies an absolute cluster age of 13.4 +/- 0.7 +/- 1.2 Gyr.
We observed two fields near M32 with the ACS/HRC on board the Hubble Space Telescope, located at distances of about 1.8 and 5.4 (hereafter F1 and F2, respectively) from the center of M32. To obtain a very detailed and deep color-magnitude diagram (CM D) and to look for short period variability, we obtained time-series imaging of each field in 32-orbit-long exposures using the F435W (B) and F555W (V) filters, spanning a temporal range of 2 days per filter. We focus on our detection of variability on RR Lyrae variable stars, which represents the only way to obtain information about the presence of a very old population (larger than 10 Gyr) in M32 from optical data. Here we present results obtained from the detection of 31 RR Lyrae in these fields: 17 in F1 and 14 in F2.
The Milky Way is surrounded by dozens of ultra-faint (< $10^5$ solar luminosities) dwarf satellite galaxies. They are the surviving remnants of the earliest galaxies, as confirmed by their ancient (~13 billion years old) and chemically primitive star s. Simulations suggest that these systems formed within extended dark matter halos and experienced early galaxy mergers and supernova feedback. However, the signatures of these events would lie outside their core regions (>2 half-light radii), which are spectroscopically unstudied due to the sparseness of their distant stars. Here we identify members of the Tucana II ultra-faint dwarf galaxy in its outer region (up to 9 half-light radii), demonstrating the system to be dramatically more spatially extended and chemically primitive than previously found. These distant stars are extremely metal-poor (<[Fe/H]>=-3.02; less than ~1/1000th of the solar iron abundance), affirming Tucana II as the most metal-poor known galaxy. We observationally establish, for the first time, an extended dark matter halo surrounding an ultra-faint dwarf galaxy out to one kiloparsec, with a total mass of >$10^7$ solar masses. This measurement is consistent with the expected ~2x$10^7$ solar masses using a generalized NFW density profile. The extended nature of Tucana II suggests that it may have undergone strong bursty feedback or been the product of an early galactic merger. We demonstrate that spatially extended stellar populations, which other ultra-faint dwarfs hint at hosting as well, are observable in principle and open the possibility for detailed studies of the stellar halos of relic galaxies.
We report on the discovery of SPLUS J210428.01-004934.2, an ultra metal-poor (UMP) star first identified from the narrow-band photometry of the Southern Photometric Local Universe Survey (S-PLUS) Data Release 1, in the SDSS Stripe 82 region. Follow-u p medium- and high-resolution spectroscopy (with Gemini South and Magellan-Clay, respectively) confirmed the effectiveness of the search for low-metallicity stars using the S-PLUS narrow-band photometry. At [Fe/H]=-4.03, SPLUS J2104-0049 has the lowest detected carbon abundance, A(C)=+4.34, when compared to the 34 previously known UMP stars in the literature, which is an important constraint on its stellar progenitor and also on stellar evolution models at the lowest metallicities. Based on its chemical abundance pattern, we speculate that SPLUS J2104-0049 could be a bonafide second-generation star, formed from a gas cloud polluted by a single metal-free ~30Mo star. This discovery opens the possibility of finding additional UMP stars directly from narrow-band photometric surveys, a potentially powerful method to help complete the inventory of such peculiar objects in our Galaxy.
It is unknown whether or not low-mass stars can form at low metallicity. While theoretical simulations of Population III (Pop III) star formation show that protostellar disks can fragment, it is impossible for those simulations to discern if those fr agments survive as low-mass stars. We report the discovery of a low-mass star on a circular orbit with orbital period P = 34.757 +/- 0.010 days in the ultra metal-poor (UMP) single-lined spectroscopic binary system 2MASS J18082002--5104378. The secondary star 2MASS J18082002--5104378 B has a mass M_2 = 0.14_{-0.01}^{+0.06} M_Sun, placing it near the hydrogen-burning limit for its composition. The 2MASS J18082002--5104378 system is on a thin disk orbit as well, making it the most metal-poor thin disk star system by a considerable margin. The discovery of 2MASS J18082002--5104378 B confirms the existence of low-mass UMP stars and its short orbital period shows that fragmentation in metal-poor protostellar disks can lead to the formation and survival of low-mass stars. We use scaling relations for the typical fragment mass and migration time along with published models of protostellar disks around both UMP and primordial composition stars to explore the formation of low-mass Pop III stars via disk fragmentation. We find evidence that the survival of low-mass secondaries around solar-mass UMP primaries implies the survival of solar-mass secondaries around Pop III primaries with masses 10 M_Sun < M_Star < 100 M_Sun. If true, this inference suggests that solar-mass Pop III stars formed via disk fragmentation could survive to the present day.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا