ترغب بنشر مسار تعليمي؟ اضغط هنا

Explanation and observability of diffraction in time

243   0   0.0 ( 0 )
 نشر من قبل J. G. Muga
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diffraction in time (DIT) is a fundamental phenomenon in quantum dynamics due to time-dependent obstacles and slits. It is formally analogous to diffraction of light, and is expected to play an increasing role to design coherent matter wave sources, as in the atom laser, to analyze time-of-flight information and emission from ultrafast pulsed excitations, and in applications of coherent matter waves in integrated atom-optical circuits. We demonstrate that DIT emerges robustly in quantum waves emitted by an exponentially decaying source and provide a simple explanation of the phenomenon, as an interference of two characteristic velocities. This allows for its controllability and optimization.

قيم البحث

اقرأ أيضاً

Here we present an strategy for the derivation of a time-dependent Dyson map which ensures simultaneously the unitarity of the time evolution and the observability of a quasi-Hermitian Hamiltonian. The time-dependent Dyson map is derived through a co nstructed Schr{o}dinger-like equation governed by the non-Hermitian Hamiltonian itself; despite its time-dependence our scheme ensures the time-independence of the metric operator, a necessary condition for the observability of the quasi-Hermitian Hamiltonian. As an illustrative example we consider a driven Harmonic oscillator described by a time-dependent non-Hermitian Hamiltonian. After computing the Dyson map and demonstrating the time-independence of the associated metric operator, we successfully derive an eigenvalue equation for this time-dependent Hamiltonian which enable us to analyze the $mathcal{PT}$-symmetry breaking process.
In this paper we investigate the scalar Aharonov-Bohm (AB) effect in two of its forms, i.e., its electric form and its gravitational form. The standard form of the electric AB effect involves having particles (such as electrons) move in regions with zero electric field but different electric potentials. When a particle is recombined with itself, it will have a different phase, which can show up as a change in the way the single particle interferes with itself when it is recombined with itself. In the case where one has quasi-static fields and potentials, the particle will invariably encounter fringing fields, which makes the theoretical and experimental status of the electric AB effect much less clear than that of the magnetic (or vector) AB effect. Here we propose using time varying fields outside of a spherical shell, and potentials inside a spherical shell to experimentally test the scalar AB effect. In our proposal a quantum system will always be in a field-free region but subjected to a non-zero time-varying potentials. Furthermore, our system will not be spatially split and brought back together as in the magnetic AB experiment. Therefore there is no spatial interference and hence no shift in a spatial interference pattern to observe. Rather, there arises purely temporal interference phenomena. As in the magnetic AB experiments, these effects are non-classical. We present t
After a measurement, to observe the relative phases of macroscopically distinguishable states we have to ``undo a quantum measurement. We generalise an earlier model of Peres from two state to N-state quantum system undergoing measurement process and discuss the issue of observing relative phases of different branches. We derive an inequality which is satisfied by the relative phases of macroscopically distinguishable states and consequently any desired relative phases can not be observed in interference setups. The principle of macroscopic complementarity is invoked that might be at ease with the macroscopic world. We illustrate the idea of limit on phase observability in Stern-Gerlach measurements and the implications are discussed.
Medium-scale ensembles of coupled qubits offer a platform for near-term quantum technologies including computing, sensing, and the study of mesoscopic quantum systems. Atom-like emitters in solids have emerged as promising quantum memories, with demo nstrations of spin-spin entanglement by optical and magnetic interactions. Magnetic coupling in particular is attractive for efficient and deterministic entanglement gates, but raises the problem of individual spin addressing at the necessary nanometer-scale separation. Current super-resolution techniques can reach this resolution, but are destructive to the states of nearby qubits. Here, we demonstrate the measurement of individual qubit states in a sub-diffraction cluster by selectively exciting spectrally distinguishable nitrogen vacancy (NV) centers. We demonstrate super-resolution localization of single centers with nanometer spatial resolution, as well as individual control and readout of spin populations. These measurements indicate a readout-induced crosstalk on non-addressed qubits below $4times10^{-2}$. This approach opens the door to high-speed control and measurement of qubit registers in mesoscopic spin clusters, with applications ranging from entanglement-enhanced sensors to error-corrected qubit registers to multiplexed quantum repeater nodes.
We experimentally demonstrate the manipulation of optical diffraction, utilizing the atomic thermal motion in a hot vapor medium of electromagnetically-induced transparency (EIT). By properly tuning the EIT parameters, the refraction induced by the a tomic motion may completely counterbalance the paraxial free-space diffraction and by that eliminates the effect of diffraction for arbitrary images. By further manipulation, the diffraction can be doubled, biased asymmetrically to induced deflection, or even reversed. The latter allows an experimental implementation of an analogy to a negative-index lens.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا