ﻻ يوجد ملخص باللغة العربية
Many high performance-computing algorithms are bandwidth limited, hence the need for optimal data rearrangement kernels as well as their easy integration into the rest of the application. In this work, we have built a CUDA library of fast kernels for a set of data rearrangement operations. In particular, we have built generic kernels for rearranging m dimensional data into n dimensions, including Permute, Reorder, Interlace/De-interlace, etc. We have also built kernels for generic Stencil computations on a two-dimensional data using templates and functors that allow application developers to rapidly build customized high performance kernels. All the kernels built achieve or surpass best-known performance in terms of bandwidth utilization.
We present a fully lock-free variant of the recent Montage system for persistent data structures. Our variant, nbMontage, adds persistence to almost any nonblocking concurrent structure without introducing significant overhead or blocking of any kind
Usage of GPUs as co-processors is a well-established approach to accelerate costly algorithms operating on matrices and vectors. We aim to further improve the performance of the Global Neutrino Analysis framework (GNA) by adding GPU support in a wa
We present the design and optimization of a linear solver on General Purpose GPUs for the efficient and high-throughput evaluation of the marginalized graph kernel between pairs of labeled graphs. The solver implements a preconditioned conjugate grad
Matrix factorizations are among the most important building blocks of scientific computing. State-of-the-art libraries, however, are not communication-optimal, underutilizing current parallel architectures. We present novel algorithms for Cholesky an
This paper presents the case study of a non-intrusive porting of a monolithic C++ library for real-time 3D hand tracking, to the domain of edge-based computation. Towards a proof of concept, the case study considers a pair of workstations, a computat