ترغب بنشر مسار تعليمي؟ اضغط هنا

The Massive Star Content of Circumnuclear Star Clusters in M83

69   0   0.0 ( 0 )
 نشر من قبل Aida Wofford
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The circumnuclear starburst of M83 (NGC 5236), the nearest such example (4.6 Mpc), constitutes an ideal site for studying the massive star IMF at high metallicity (12+log[O/H]=9.1$pm$0.2, Bresolin & Kennicutt 2002). We analyzed archival HST/STIS FUV imaging and spectroscopy of 13 circumnuclear star clusters in M83. We compared the observed spectra with two types of single stellar population (SSP) models, semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE (Robert et al. 1993), and theoretical models, which are based on a new theoretical UV library of hot massive stars described in Leitherer et al. (2010) and computed with WM-Basic (Pauldrach et al. 2001). The models were generated with Starburst99 (Leitherer & Chen 2009). We derived the reddenings, the ages, and the masses of the clusters from model fits to the FUV spectroscopy, as well as from optical HST/WFC3 photometry.

قيم البحث

اقرأ أيضاً

344 - Aida Wofford , Rupali Chandar , 2010
We analyze archival HST/STIS/FUV-MAMA imaging and spectroscopy of 13 compact star clusters within the circumnuclear starburst region of M83, the closest such example. We compare the observed spectra with semi-empirical models, which are based on an e mpirical library of Galactic O and B stars observed with IUE, and with theoretical models, which are based on a new theoretical UV library of hot massive stars computed with WM-Basic. The models were generated with Starburst99 for metallicities of Z=0.020 and Z=0.040, and for stellar IMFs with upper mass limits of 10, 30, 50, and 100 M_sol. We estimate the ages and masses of the clusters from the best fit model spectra, and find that the ages derived from the semi-empirical and theoretical models agree within a factor of 1.2 on average. A comparison of the spectroscopic age estimates with values derived from HST/WFC3/UVIS multi-band photometry shows a similar level of agreement for all but one cluster. The clusters have a range of ages from about 3 to 20 Myr, and do not appear to have an age gradient along M83s starburst. Clusters with strong P-Cygni profiles have masses of a few times 10^4 M_sol, seem to have formed stars more massive than 30 M_sol, and are consistent with a Kroupa IMF from 0.1-100 M_sol. Field regions in the starburst lack P-Cygni profiles and are dominated by B stars.
We present an abundance analysis of seven super-star clusters in the disk of M83. The near-infrared spectra of these clusters are dominated by Red Supergiants, and the spectral similarity in the J-band of such stars at uniform metallicity means that the integrated light from the clusters may be analysed using the same tools as those applied to single stars. Using data from VLT/KMOS we estimate metallicities for each cluster in the sample. We find that the abundance gradient in the inner regions of M83 is flat, with a central metallicity of [Z] = 0.21$pm$0.11 relative to a Solar value of $Z_odot$=0.014, which is in excellent agreement with the results from an analysis of luminous hot stars in the same regions. Compiling this latest study with our other recent work, we construct a mass-metallicity relation for nearby galaxies based entirely on the analysis of RSGs. We find excellent agreement with the other stellar-based technique, that of blue supergiants, as well as with temperature-sensitive (`auroral or `direct) hii-region studies. Of all the HII-region strong-line calibrations, those which are empirically calibrated to direct-method studies (N2 and O3N2) provide the most consistent results.
To distinguish between the different theories proposed to explain massive star formation, it is crucial to establish the distribution, the extinction, and the density of low-mass stars in massive star-forming regions. We analyzed deep X-ray observati ons of the Orion massive star-forming region using the Chandra Orion Ultradeep Project (COUP) catalog. We found that pre-main sequence (PMS) low-mass stars cluster toward the three massive star-forming regions: the Trapezium Cluster (TC), the Orion Hot Core (OHC), and OMC1-S. We derived low-mass stellar densities of 10^{5} stars pc^{-3} in the TC and OMC1-S, and of 10^{6} stars pc^{-3} in the OHC. The close association between the low-mass star clusters with massive star cradles supports the role of these clusters in the formation of massive stars. The X-ray observations show for the first time in the TC that low-mass stars with intermediate extinction are clustered toward the position of the most massive star, which is surrounded by a ring of non-extincted low-mass stars. Our analysis suggests that at least two basic ingredients are needed in massive star formation: the presence of dense gas and a cluster of low-mass stars. The scenario that better explains our findings assumes high fragmentation in the parental core, accretion at subcore scales that forms a low-mass stellar cluster, and subsequent competitive accretion.
We present integrated-light spectra of 8 Young Massive Clusters (YMCs) in the metal-rich spiral galaxy NGC 5236 (M 83). The observations were taken with the X-Shooter spectrograph on the ESO Very Large Telescope. Through the use of theoretical isochr ones and synthetic integrated-light (IL) spectra we derive metallicities and study the radial metallicity gradient observed through these young populations. For the inner regions of the galaxy we observe a relatively shallow metallicity gradient of $-$0.37 $pm$0.29 dex R$_{25}^{-1}$, agreeing with chemical evolution models with an absence of infall material and a relatively low mass loss due to winds in the inner parts of the disk. We estimate a central metallicity of [$Z$] = $+$0.17 $pm$ 0.12 dex, finding excellent agreement with that obtained via other methods (e.g. blue supergiants and J-band). We infer a metallicity of 12+log(O/H) = 8.75 $pm$ 0.08 dex at R/R$_{25}$ = 0.4, which fits the stellar mass-metallicity relation (MZR) compilation of blue supergiants and IL studies.
Stellar populations are powerful tools for investigating the evolution of extragalactic environments. We present the first UV integrated-light spectroscopic observations for 15 young star clusters in the starburst M83 with a special focus on metallic ity measurements. The data were obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. We analyse the data applying an abundance technique previously used to study an optical set of star clusters. We estimate a central metallicity of [Z] = $+$0.20 $pm$ 0.15 dex in agreement with those obtained through independent methods, i.e. $J$-band and blue supergiants. We estimate a UV metallicity gradient of $-$0.041 $pm$ 0.022 dex kpc$^{-1}$ consistent with the optical metallicity gradient of $-$0.040 $pm$ 0.032 dex kpc$^{-1}$ for $R/R_{25}<0.5$. Combining our stellar metallicities, UV and optical, with those from HII regions (strong-line abundances based on empirical calibrations) we identify two possible breaks in the gradient of M83 at galactocentric distances of $Rsim0.5$ and $1.0:R_{25}$. If the abundance breaks are genuine, the metallicity gradient of this galaxy follows a steep-shallow-steep trend, a scenario predicted by three-dimensional (3D) numerical simulations of disc galaxies. The first break is located near the corotation radius. This first steep gradient may have originated by recent star formation episodes and a relatively young bar ($<$1 Gyr). In the numerical simulations the shallow gradient is created by the effects of dilution by outflow where low-metallicity material is mixed with enriched gas. And finally, the second break and last steep gradient mark the farthest galactocentric distances where the outward flow has penetrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا