ﻻ يوجد ملخص باللغة العربية
We study CR quadrics satisfying a symmetry property $(tilde S)$ which is slightly weaker than the symmetry property $(S)$, recently introduced by W. Kaup, which requires the existence of an automorphism reversing the gradation of the Lie algebra of infinitesimal automorphisms of the quadric. We characterize quadrics satisfying the $(tilde S)$ property in terms of their Levi-Tanaka algebras. In many cases the $(tilde S)$ property implies the $(S)$ property; this holds in particular for compact quadrics. We also give a new example of a quadric such that the dimension of the algebra of positive-degree infinitesimal automorphisms is larger than the dimension of the quadric.
A helical CR structure is a decomposition of a real Euclidean space into an even-dimensional horizontal subspace and its orthogonal vertical complement, together with an almost complex structure on the horizontal space and a marked vector in the vert
We propose two constructions extending the Chern-Moser normal form to non-integrable Levi-nondegenerate (hypersurface type) almost CR structures. One of them translates the Chern-Moser normalization into pure intrinsic setting, whereas the other dire
Applying Lies theory, we show that any $mathcal{C}^omega$ hypersurface $M^5 subset mathbb{C}^3$ in the class $mathfrak{C}_{2,1}$ carries Cartan-Moser chains of orders $1$ and $2$. Integrating and straightening any order $2$ chain at any point $p in
In this paper we characterize sums of CR functions from competing CR structures in two scenarios. In one scenario the structures are conjugate and we are adding to the theory of pluriharmonic boundary values. In the second scenario the structures are
A smooth, strongly $mathbb{C}$-convex, real hypersurface $S$ in $mathbb{CP}^n$ admits a projective dual CR structure in addition to the standard CR structure. Given a smooth function $u$ on $S$, we provide characterizations for when $u$ can be decomp