ﻻ يوجد ملخص باللغة العربية
We performed inelastic neutron scattering on powder sample of the P-doped iron-based superconductor BaFe2(As0.65P0.35)2 with Tc = 30K, whose superconducting (SC) order parameter is expected to have line nodes. We have observed spin resonance at Q $sim$ 1.2{AA}^{-1} and E=12 meV in the SC state. The resonance enhancement, which can be a measure of the area of sign reversal between the hole and electron Fermi surfaces (FSs), is comparable to those of other iron-based superconductors without line nodes. This fact indicates that the sign reversal between the FSs is still dominant in this system, and the line nodes should create only limited area of sign-reversal on a single FS. Hence the system can hold relatively high-Tc. Comparison with theoretical calculation indicates horizontal line nodes may be a candidate to reproduce the observation.
We report specific heat measurements on the Fe-based superconductor BaFe2(As0.7P0.3)2, a material on which previous penetration depth, NMR, and thermal conductivity measurements have observed a high density of low-energy excitations, which have been
The BaFe2(As1-xPx)2 compounds with x = 0 (parent), x = 0.10 (under-doped), x = 0.31, 0.33, 0.53 (superconductors with Tc = 27.3 K, 27.6 K, 13.9 K, respectively) and x = 0.70, 0.77 (over-doped) have been investigated versus temperature using 57Fe Moss
We demonstrate that the anisotropy R of the paramagnetic spin fluctuations grows toward Tc at 75As sites in the optimally electron-doped superconductor Ba[(Fe0.92Co0.08)2]2As2, with stronger spin fluctuations along the c-axis. Our finding is in remar
A cavity perturbation technique is used to study the microwave response of the organic superconductor k-(BEDT-TTF)2Cu(NCS)2. Observation of a Josephson plasma resonance, below Tc (approx. 10 K), enables investigation of the vortex structure within th
We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe2(As0.7P0.3)2 superconductor (Tc = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin