ﻻ يوجد ملخص باللغة العربية
We reinterpret the generic CDF charged massive particle limit to obtain a limit on the mass of a stable or long-lived gluino. Various sources of uncertainty are examined. The $R$-hadron spectrum and scattering cross sections are modeled based on known low-energy hadron physics and the resultant uncertainties are quantified and found to be small compared to uncertainties from the scale dependence of the NLO pQCD production cross sections. The largest uncertainty in the limit comes from the unknown squark mass: when the squark -- gluino mass splitting is small, we obtain a gluino mass limit of 407 GeV, while in the limit of heavy squarks the gluino mass limit is 397 GeV. For arbitrary (degenerate) squark masses, we obtain a lower limit of 322 GeV on the gluino mass. These limits apply for any gluino lifetime longer than $sim 30$ ns, and are the most stringent limits for such a long-lived or stable gluino.
Many models of dark matter predict long-lived particles (LLPs) that can give rise to striking signatures at the LHC. Existing searches for displaced vertices are however tailored towards heavy LLPs. In this work we show that this bias severely affect
Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray sh
In this paper, we point out a novel signature of physics beyond the Standard Model which could potentially be observed both at the Large Hadron Collider (LHC) and at future colliders. This signature, which emerges naturally within many proposed exten
We have studied three realistic benchmark geometries for a new far detector GAZELLE to search for long-lived particles at the superkekb accelerator in Tsukuba, Japan. The new detector would be housed in the same building as Belle II and observe the s
Run 5 of the HL-LHC era (and beyond) may provide new opportunities to search for physics beyond the standard model (BSM) at interaction point 2 (IP2). In particular, taking advantage of the existing ALICE detector and infrastructure provides an oppor