ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Torque Ferromagnetic Resonance Induced by the Spin Hall Effect

127   0   0.0 ( 0 )
 نشر من قبل Luqiao Liu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film. The flow of alternating current through a Pt/NiFe bilayer generates an oscillating transverse spin current in the Pt, and the resultant transfer of spin angular momentum to the NiFe induces ferromagnetic resonance (FMR) dynamics. The Oersted field from the current also generates an FMR signal but with a different symmetry. The ratio of these two signals allows a quantitative determination of the spin current and the spin Hall angle.

قيم البحث

اقرأ أيضاً

The spin torque ferromagnetic resonance (STFMR) is one of the popular methods for measurement of the spin Hall angle (SHA). However, in order to accurately determine SHA from STFMR measurements, the acquired data must be carefully analyzed: The reson ance linewidth should be determined to an accuracy of a fraction of an Oe, while the dynamical interaction leading to the measured response consists of the conventional field-induced ferromagnetic resonance (FMR), spin-torque induced FMR, and of the inverse spin Hall effect (ISHE). Additionally, the signal often deteriorates when DC current is passed through the device. In this work we compare the STFMR method with two other FMR-based methods that are used to extract SHA. The first is a device-level FMR and the second is based on the ISHE. We identify artefacts that are caused by the noise floor of the instrumentation that make the measurement of SHA illusive even when the signal to noise ratio seems to be reasonable. Additionally, we estimate a 10% error in SHA that results from neglecting the magnetic anisotropies as in conventional measurements. Overall, we find the STFMR to be the most robust of the three methods despite the complexity of the interaction taking place therein. The conclusions of our work lead to a more accurate determination of SHA and will assist in the search of novel materials for energy efficient spin-based applications.
Efficient generation of spin-orbit torques (SOTs) is central for the exciting field of spin-orbitronics. Platinum, the archetypal spin Hall material, has the potential to be an outstanding provider for spin-orbit torques due to its giant spin Hall co nductivity, low resistivity, high stabilities, and the ability to be compatible with CMOS circuits. However, pure clean-limit Pt with low resistivity still provides a low damping-like spin-orbit torque efficiency, which limits its practical applications. The efficiency of spin-orbit torque in Pt-based magnetic heterostructures can be improved considerably by increasing the spin Hall ratio of Pt and spin transmissivity of the interfaces. Here we reviews recent advances in understanding the physics of spin current generation, interfacial spin transport, and the metrology of spin-orbit torques, and summarize progress towards the goal of Pt-based spin-orbit torque memories and logic that are fast, efficient, reliable, scalable, and non-volatile.
We theoretically examine the spin-transfer torque in the presence of spin-orbit interaction (SOI) at impurities in a ferromagnetic metal on the basis of linear response theory. We obtained, in addition to the usual spin-transfer torque, a new contrib utioin $sim {bm j}_{rm SH}^{phantom{dagger}} cdot abla {bm n}$ in the first order in SOI, where ${bm j}_{rm SH}^{phantom{dagger}}$ is the spin Hall current driven by an external electric field. This is a reaction to inverse spin Hall effect driven by spin motive force in a ferromagnet.
We demonstrate a technique of broadband spin torque ferromagnetic resonance (ST-FMR) with magnetic field modulation for measurements of spin wave properties in magnetic nanostructures. This technique gives great improvement in sensitivity over the co nventional ST-FMR measurements, and application of this technique to nanoscale magnetic tunnel junctions (MTJs) reveals a rich spectrum of standing spin wave eigenmodes. Comparison of the ST-FMR measurements with micromagnetic simulations of the spin wave spectrum allows us to explain the character of low-frequency magnetic excitations in nanoscale MTJs.
In the normal metal/ferromagnetic insulator bilayer (such as Pt/Y$_{3}$Fe$_{5}$O$_{12}$) and the normal metal/ferromagnetic metal/oxide trilayer (such as Pt/Co/AlO$_{x}$) where spin injection and ejection are achieved by the spin Hall effect in the n ormal metal, we propose a minimal model based on quantum tunneling of spins to explain the spin-transfer torque and spin pumping caused by the spin Hall effect. The ratio of their damping-like to field-like component depends on the tunneling wave function that is strongly influenced by generic material properties such as interface $s-d$ coupling, insulating gap, and layer thickness, yet the spin relaxation plays a minor role. The quantified result renders our minimal model an inexpensive tool for searching for appropriate materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا