ﻻ يوجد ملخص باللغة العربية
In this paper, we consider regression models with a Hilbert-space-valued predictor and a scalar response, where the response depends on the predictor only through a finite number of projections. The linear subspace spanned by these projections is called the effective dimension reduction (EDR) space. To determine the dimensionality of the EDR space, we focus on the leading principal component scores of the predictor, and propose two sequential $chi^2$ testing procedures under the assumption that the predictor has an elliptically contoured distribution. We further extend these procedures and introduce a test that simultaneously takes into account a large number of principal component scores. The proposed procedures are supported by theory, validated by simulation studies, and illustrated by a real-data example. Our methods and theory are applicable to functional data and high-dimensional multivariate data.
We consider a $l_1$-penalization procedure in the non-parametric Gaussian regression model. In many concrete examples, the dimension $d$ of the input variable $X$ is very large (sometimes depending on the number of observations). Estimation of a $bet
Suppose that $Y$ is a scalar and $X$ is a second-order stochastic process, where $Y$ and $X$ are conditionally independent given the random variables $xi_1,...,xi_p$ which belong to the closed span $L_X^2$ of $X$. This paper investigates a unified fr
An important problem in large scale inference is the identification of variables that have large correlations or partial correlations. Recent work has yielded breakthroughs in the ultra-high dimensional setting when the sample size $n$ is fixed and t
In recent years, manifold methods have moved into focus as tools for dimension reduction. Assuming that the high-dimensional data actually lie on or close to a low-dimensional nonlinear manifold, these methods have shown convincing results in several
A dimension reduction for the hyperbolic space is established. When points are far apart an embedding with bounded distortion into the hyperbolic plane is achieved.