ﻻ يوجد ملخص باللغة العربية
We present a new adaptive kernel density estimator based on linear diffusion processes. The proposed estimator builds on existing ideas for adaptive smoothing by incorporating information from a pilot density estimate. In addition, we propose a new plug-in bandwidth selection method that is free from the arbitrary normal reference rules used by existing methods. We present simulation examples in which the proposed approach outperforms existing methods in terms of accuracy and reliability.
In this work we study the estimation of the density of a totally positive random vector. Total positivity of the distribution of a random vector implies a strong form of positive dependence between its coordinates and, in particular, it implies posit
This paper studies the estimation of the conditional density f (x, $times$) of Y i given X i = x, from the observation of an i.i.d. sample (X i , Y i) $in$ R d , i = 1,. .. , n. We assume that f depends only on r unknown components with typically r d
We aim at estimating the invariant density associated to a stochastic differential equation with jumps in low dimension, which is for $d=1$ and $d=2$. We consider a class of jump diffusion processes whose invariant density belongs to some Holder spac
The purpose of this note is to provide an approximation for the generalized bootstrapped empirical process achieving the rate in Kolmos et al. (1975). The proof is based on much the same arguments as in Horvath et al. (2000). As a consequence, we est
Let $v$ be a vector field in a bounded open set $Gsubset {mathbb {R}}^d$. Suppose that $v$ is observed with a random noise at random points $X_i, i=1,...,n,$ that are independent and uniformly distributed in $G.$ The problem is to estimate the integr