ترغب بنشر مسار تعليمي؟ اضغط هنا

Multicasting Homogeneous and Heterogeneous Quantum States in Quantum Networks

291   0   0.0 ( 0 )
 نشر من قبل Min-Hsiu Hsieh
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we target the practical implementation issues of quantum multicast networks. First, we design a recursive lossless compression that allows us to control the trade-off between the circuit complexity and the dimension of the compressed quantum state. We give a formula that describes the trade-off, and further analyze how the formula is affected by the controlling parameter of the recursive procedure. Our recursive lossless compression can be applied in a quantum multicast network where the source outputs homogeneous quantum states (many copies of a quantum state) to a set of destinations through a bottleneck. Such a recursive lossless compression is extremely useful in the current situation where the technology of producing large-scale quantum circuits is limited. Second, we develop two lossless compression schemes that work for heterogeneous quantum states (many copies of a set of quantum states) when the set of quantum states satisfies a certain structure. The heterogeneous compression schemes provide extra compressing power over the homogeneous compression scheme. Finally, we realize our heterogeneous compression schemes in several quantum multicast networks, including the single-source multi-terminal model, the multi-source multi-terminal model, and the ring networks. We then analyze the bandwidth requirements for these network models.


قيم البحث

اقرأ أيضاً

Recent advances in quantum technologies are rapidly stimulating the building of quantum networks. With the parallel development of multiple physical platforms and different types of encodings, a challenge for present and future networks is to uphold a heterogeneous structure for full functionality and therefore support modular systems that are not necessarily compatible with one another. Central to this endeavor is the capability to distribute and interconnect optical entangled states relying on different discrete and continuous quantum variables. Here we report an entanglement swapping protocol connecting such entangled states. We generate single-photon entanglement and hybrid entanglement between particle-like and wave-like optical qubits, and then demonstrate the heralded creation of hybrid entanglement at a distance by using a specific Bell-state measurement. This ability opens up the prospect of connecting heterogeneous nodes of a network, with the promise of increased integration and novel functionalities.
Considering a network of dissipative quantum harmonic oscillators we deduce and analyze the optimum topologies which are able to store, for the largest period of time, a quantum superposition previously prepared in one of the network oscillators. The storage of the superposition is made dynamically, in that the state to be protected evolves through the network before being retrieved back in the oscillator where it was prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.
Quantum multipartite entangled states play significant roles in quantum information processing. By using difference schemes and orthogonal partitions, we construct a series of infinite classes of irredundant mixed orthogonal arrays (IrMOAs) and thus provide positive answers to two open problems. The first is the extension of the method for constructing homogeneous systems from orthogonal arrays (OAs) to heterogeneous multipartite systems with different individual levels. The second is the existence of $k$-uniform states in heterogeneous quantum systems. We present explicit constructions of two and three-uniform states for arbitrary heterogeneous multipartite systems with coprime individual levels, and characterize the entangled states in heterogeneous systems consisting of subsystems with nonprime power dimensions as well. Moreover, we obtain infinite classes of $k$-uniform states for heterogeneous multipartite systems for any $kgeq2$. The non-existence of a class of IrMOAs is also proved.
Large multipartite quantum systems tend to rapidly reach extraordinary levels of complexity as their number of constituents and entanglement links grow. Here we use complex network theory to study a class of continuous variables quantum states that p resent both multipartite entanglement and non-Gaussian statistics. In particular, the states are built from an initial imprinted cluster state created via Gaussian entangling operations according to a complex network structure. To go beyond states that can be easily simulated via classical computers we engender non-Gaussian statistics via multiple photon subtraction operations. We then use typical networks measures, the degree and clustering, to characterize the emergent complex network of photon-number correlations after photon subtractions. We show that, in contrast to regular clusters, in the case of imprinted complex network structures the emergent correlations are strongly affected by photon subtraction. On the one hand, we unveil that photon subtraction universally increases the average photon-number correlations, regardless of the imprinted network structure. On the other hand, we show that the shape of the distributions in the emergent networks after subtraction is greatly influenced by the structure of the imprinted network, as witnessed by their higher-moments. Thus for the field of network theory, we introduce a new class of networks to study. At the same time for the field of continuous variable quantum states, this work presents a new set of practical tools to benchmark systems of increasing complexity.
The relation between completely positive maps and compound states is investigated in terms of the notion of quantum conditional probability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا