ترغب بنشر مسار تعليمي؟ اضغط هنا

Dephasing in coherently-split quasicondensates

259   0   0.0 ( 0 )
 نشر من قبل Igor E. Mazets
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically model the evolution of a pair of coherently split quasicondensates. A truly one-dimensional case is assumed, so that the loss of the (initially high) coherence between the two quasicondensates is due to dephasing only, but not due to the violation of integrability and subsequent thermalization (which are excluded from the present model). We confirm the subexponential time evolution of the coherence between two quasicondensates $propto exp [-(t/t_0)^{2/3}]$, experimentally observed by S. Hofferberth {em et. al.}, Nature {bf 449}, 324 (2007). The characteristic time $t_0$ is found to scale as the square of the ratio of the linear density of a quasicondensate to its temperature, and we analyze the full distribution function of the interference contrast and the decay of the phase correlation.



قيم البحث

اقرأ أيضاً

We study the non-equilibrium dynamics of two tunnel-coupled one-dimensional quasicondensates following a quench of the coupling strength from zero to a fixed finite value. More specifically, starting from two independent quasicondensates in thermal e quilibrium, with initial temperature and chemical potential imbalance, we suddenly switch on the tunnel-coupling and analyse the post-quench equilibration in terms of particle number and energy imbalances. We find that, in certain parameter regimes, the net energy can flow from the colder quasicondensate to the hotter one and is governed by the surplus of low energy particles flowing from the cold to the hot system relative to the high-energy particles flowing in the reverse direction. In all cases, the approach to the new thermal equilibrium occurs through transient, damped oscillations. We also find that for a balanced initial state the coupled quasicondensates can relax into a final thermal equilibrium state in which they display a thermal phase coherence length that is larger than their initial phase coherence length, even though the new equilibrium temperature is higher. The increase in the phase coherence length occurs due to phase locking which manifests itself via an increased degree of correlation between the local relative phases of the quasicondensates at two arbitrary points.
102 - G. Diaz-Camacho , C. Tejedor , 2018
We consider a polariton microcavity resonantly driven by two external lasers which simultaneously pump both lower and upper polariton branches at normal incidence. In this setup, we study the occurrence of instabilities of the pump-only solutions tow ards the spontaneous formation of patterns. Their appearance is a consequence of the spontaneous symmetry breaking of translational and rotational invariance due to interaction induced parametric scattering. We observe the evolution between diverse patterns which can be classified as single-pump, where parametric scattering occurs at the same energy as one of the pumps, and as two-pump, where scattering occurs at a different energy. For two-pump instabilities, stripe and chequerboard patterns become the dominant steady-state solutions because cubic parametric scattering processes are forbidden. This contrasts with the single-pump case, where hexagonal patterns are the most common arrangements. We study the possibility of controlling the evolution between different patterns. Our results are obtained within a linear stability analysis and are confirmed by finite size full numerical calculations.
We consider a fixed impurity immersed in a Fermi gas at finite temperature. We take the impurity to have two internal spin states, where the $uparrow$ state is assumed to interact with the medium such that it exhibits the orthogonality catastrophe, w hile the $downarrow$ state is a bare noninteracting particle. Introducing a Rabi coupling between the impurity states therefore allows us to investigate the coupling between a discrete spectral peak and the Fermi-edge singularity, i.e., between states with and without a quasiparticle residue. Combining an exact treatment of the uncoupled impurity Greens functions with a variational approach to treat the Rabi driven dynamics, we find that the system features Rabi oscillations whose frequency scales as a non-trivial power of the Rabi drive at low temperatures. This reflects the power law of the Fermi-edge singularity and, importantly, this behavior is qualitatively different from the case of a mobile impurity quasiparticle where the scaling is linear. We therefore argue that the scaling law serves as an experimentally implementable probe of the orthogonality catastrophe. We additionally simulate rf spectroscopy beyond linear response, finding a remarkable agreement with an experiment using heavy impurities [Kohstall $textit{et al.}$, Nature $textbf{485}$, 615 (2012)], thus demonstrating the power of our approach.
121 - Marta Abad 2015
We study the stability of persistent currents in a coherently coupled quasi-2D Bose-Einstein condensate confined in a ring trap at T=0. By numerically solving Gross-Pitaevskii equations and by analyzing the excitation spectrum obtained from diagonali zation of the Bogoliubov-de Gennes matrix, we describe the mechanisms responsible for the decay of the persistent currents depending on the values of the interaction coupling constants and the Rabi frequency. When the unpolarized system decays due to an energetic instability in the density channel, the spectrum may develop a roton-like minimum, which gives rise to the finite wavelength excitation necessary for vortex nucleation at the inner surface. When decay in the unpolarized system is driven by spin-density excitations, the finite wavelength naturally arises from the existence of a gap in the excitation spectrum. In the polarized phase of the coherently coupled condensate, there is an hybridization of the excitation modes that leads to complex decay dynamics. In particular, close to the phase transition, a state of broken rotational symmetry is found to be stationary and stable.
We study the properties of propagating polariton wave-packets and their connection to the stability of doubly charged vortices. Wave-packet propagation and related photoluminescence spectra exhibit a rich behaviour dependent on the excitation regime. We show that, because of the non-quadratic polariton dispersion, doubly charged vortices are stable only when initiated in wave-packets propagating at small velocities. Vortices propagating at larger velocities, or those imprinted directly into the polariton optical parametric oscillator (OPO) signal and idler are always unstable to splitting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا