ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical treatment of long-range Coulomb potential with Berggren bases

116   0   0.0 ( 0 )
 نشر من قبل Nicolas Michel
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Michel




اسأل ChatGPT حول البحث

The Schrodinger equation incorporating the long-range Coulomb potential takes the form of a Fredholm equation whose kernel is singular on its diagonal when represented by a basis bearing a continuum of states, such as in a Fourier-Bessel transform. Several methods have been devised to tackle this difficulty, from simply removing the infinite-range of the Coulomb potential with a screening or cut function to using discretizing schemes which take advantage of the integrable character of Coulomb kernel singularities. However, they have never been tested in the context of Berggren bases, which allow many-body nuclear wave functions to be expanded, with halo or resonant properties within a shell model framework. It is thus the object of this paper to test different discretization schemes of the Coulomb potential kernel in the framework of complex-energy nuclear physics. For that, the Berggren basis expansion of proton states pertaining to the sd-shell arising in the A ~ 20 region, being typically resonant, will be effected. Apart from standard frameworks involving a cut function or analytical integration of singularities, a new method will be presented, which replaces diagonal singularities by finite off-diagonal terms. It will be shown that this methodology surpasses in precision the two former techniques.



قيم البحث

اقرأ أيضاً

We consider the parabolic Anderson problem $partial_t u=kappaDelta u+xi u$ on $(0,infty)times Z^d$ with random i.i.d. potential $xi=(xi(z))_{zinZ^d}$ and the initial condition $u(0,cdot)equiv1$. Our main assumption is that $esssupxi(0)=0$. Depending on the thickness of the distribution $prob(xi(0)incdot)$ close to its essential supremum, we identify both the asymptotics of the moments of $u(t,0)$ and the almost-sure asymptotics of $u(t,0)$ as $ttoinfty$ in terms of variational problems. As a by-product, we establish Lifshitz tails for the random Schrodinger operator $-kappaDelta-xi$ at the bottom of its spectrum. In our class of $xi$ distributions, the Lifshitz exponent ranges from $d/2$ to $infty$; the power law is typically accompanied by lower-order corrections.
107 - I.I.Guseinov 2009
Using one-range addition theorems for noninteger n Slater type orbitals and Coulomb-Yukawa like correlated interaction potentials with noninteger indices obtained by the author with the help of complete orthonormal sets of exponential type orbitals, the series of expansion formulas are established for the potential produced by molecule, and the potential energy of interaction between molecules through the radius vectors of nuclei of molecules, and the linear combination coefficients of molecular orbitals. The formulae obtained are useful especially for the study of interaction between atomic-molecular systems containing any number of closed and open shells when the Hartree-Fock-Roothaan and explicitly correlated methods are employed. The relationships obtained are valid for the arbitrary values of indices and screening constants of orbitals and correlated interaction potentials.
We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define th e periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.
274 - Akira Sakai 2018
This is a short review of the two papers on the $x$-space asymptotics of the critical two-point function $G_{p_c}(x)$ for the long-range models of self-avoiding walk, percolation and the Ising model on $mathbb{Z}^d$, defined by the translation-invari ant power-law step-distribution/coupling $D(x)propto|x|^{-d-alpha}$ for some $alpha>0$. Let $S_1(x)$ be the random-walk Green function generated by $D$. We have shown that $bullet~~S_1(x)$ changes its asymptotic behavior from Newton ($alpha>2$) to Riesz ($alpha<2$), with log correction at $alpha=2$; $bullet~~G_{p_c}(x)simfrac{A}{p_c}S_1(x)$ as $|x|toinfty$ in dimensions higher than (or equal to, if $alpha=2$) the upper critical dimension $d_c$ (with sufficiently large spread-out parameter $L$). The model-dependent $A$ and $d_c$ exhibit crossover at $alpha=2$. The keys to the proof are (i) detailed analysis on the underlying random walk to derive sharp asymptotics of $S_1$, (ii) bounds on convolutions of power functions (with log corrections, if $alpha=2$) to optimally control the lace-expansion coefficients $pi_p^{(n)}$, and (iii) probabilistic interpretation (valid only when $alphale2$) of the convolution of $D$ and a function $varPi_p$ of the alternating series $sum_{n=0}^infty(-1)^npi_p^{(n)}$. We outline the proof, emphasizing the above key elements for percolation in particular.
In this paper, we convert the lattice configurations into networks with different modes of links and consider models on networks with arbitrary numbers of interacting particle-pairs. We solve the Heisenberg model by revealing the relation between the Casimir operator of the unitary group and the conjugacy-class operator of the permutation group. We generalize the Heisenberg model by this relation and give a series of exactly solvable models. Moreover, by numerically calculating the eigenvalue of Heisenberg models and random walks on network with different numbers of links, we show that a system on lattice configurations with interactions between more particle-pairs have higher degeneracy of eigenstates. The highest degeneracy of eigenstates of a lattice model is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا