ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrating Out Astrophysical Uncertainties

38   0   0.0 ( 0 )
 نشر من قبل Neal Weiner
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Patrick J. Fox




اسأل ChatGPT حول البحث

Underground searches for dark matter involve a complicated interplay of particle physics, nuclear physics, atomic physics and astrophysics. We attempt to remove the uncertainties associated with astrophysics by developing the means to map the observed signal in one experiment directly into a predicted rate at another. We argue that it is possible to make experimental comparisons that are completely free of astrophysical uncertainties by focusing on {em integral} quantities, such as $g(v_{min})=int_{v_{min}} dv, f(v)/v $ and $int_{v_{thresh}} dv, v g(v)$. Direct comparisons are possible when the $v_{min}$ space probed by different experiments overlap. As examples, we consider the possible dark matter signals at CoGeNT, DAMA and CRESST-Oxygen. We find that expected rate from CoGeNT in the XENON10 experiment is higher than observed, unless scintillation light output is low. Moreover, we determine that S2-only analyses are constraining, unless the charge yield $Q_y< 2.4 {, rm electrons/keV}$. For DAMA to be consistent with XENON10, we find for $q_{Na}=0.3$ that the modulation rate must be extremely high ($gsim 70%$ for $m_chi = 7, gev$), while for higher quenching factors, it makes an explicit prediction (0.8 - 0.9 cpd/kg) for the modulation to be observed at CoGeNT. Finally, we find CDMS-Si, even with a 10 keV threshold, as well as XENON10, even with low scintillation, would have seen significant rates if the excess events at CRESST arise from elastic WIMP scattering, making it very unlikely to be the explanation of this anomaly.

قيم البحث

اقرأ أيضاً

We study the capabilities of the MAJORANA DEMONSTRATOR, a neutrinoless double-beta decay experiment currently under construction at the Sanford Underground Laboratory, as a light WIMP detector. For a cross section near the current experimental bound, the MAJORANA DEMONSTRATOR should collect hundreds or even thousands of recoil events. This opens up the possibility of simultaneously determining the physical properties of the dark matter and its local velocity distribution, directly from the data. We analyze this possibility and find that allowing the dark matter velocity distribution to float considerably worsens the WIMP mass determination. This result is traced to a previously unexplored degeneracy between the WIMP mass and the velocity dispersion. We simulate spectra using both isothermal and Via Lactea II velocity distributions and comment on the possible impact of streams. We conclude that knowledge of the dark matter velocity distribution will greatly facilitate the mass and cross section determination for a light WIMP.
The superradiant instability of black hole space-times has been used to place limits on ultra-light bosonic particles. We show that these limits are model dependent. While the initial growth of the mode is gravitational and thus model independent, th e ability to place a limit on new particles requires the mode to grow unhindered to a large number density. Non-linear interactions between the particle and other light degrees of freedom that are mediated through higher dimension operators can damp this growth, eliminating the limit. However, these non-linearities may also destroy a cosmic abundance of these light particles, an attractive avenue for their discovery in several experiments. We study the specific example of the QCD axion and show that it is easy to construct models where these non-linearities eliminate limits from superradiance while preserving their cosmic abundance.
We examine the cosmological and astrophysical signatures of a dark baryon, a neutral fermion that mixes with the neutron. As the mixing is through a higher-dimensional operator at the quark level, production of the dark baryon at high energies is enh anced so that its abundance in the early universe may be significant. Treating its initial abundance as a free parameter, we derive new, powerful limits on the properties of the dark baryon. Primordial nucleosynthesis and the cosmic microwave background provide strong constraints due to the inter-conversion of neutrons to dark baryons through their induced transition dipole, and due to late decays of the dark baryon. Additionally, neutrons in a neutron star could decay slowly to dark baryons, providing a novel source of heat that is constrained by measurements of pulsar temperatures. Taking all the constraints into account, we identify parameter space where the dark baryon can be a viable dark matter candidate and discuss promising avenues for probing it.
Axions constituting dark matter (DM) are often considered to form a non-relativistic oscillating field. We explore bursts of relativistic axions from transient astrophysical sources, such as axion star explosions, where the sources are initially non- relativistic. For the QCD axion, bursts from collapsing axion stars lead to potentially detectable signals over a wide range of axion masses $10^{-15} , textrm{eV} lesssim m lesssim 10^{-7} , textrm{eV}$ in future experiments, such as ABRACADABRA, DMRadio and SHAFT. Unlike conventional cold axion DM searches, the sensitivity to axion bursts is not necessarily suppressed as $1/f$ for large decay constants $f$. The detection of axion bursts could provide new insights into the fundamental axion potential, which is challenging to probe otherwise. An ensemble of bursts in the distant past, in direct analogy with neutrinos, would give rise to a diffuse axion background distinct from the usual cold axion DM. Coincidence with other signatures, such as electromagnetic and gravitational-wave emission, would provide a new beyond-the-standard-model window into multi-messenger astronomy.
In this talk, we discuss the physics modelling of particle spectra arising from dark matter (DM) annihilation or decay. In the context of the indirect searches of DM, the final state products will, in general, undergo a set of complicated processes s uch as resonance decays, QED/QCD radiation, hadronisation and hadron decays. This set of processes lead to stable particles (photons, positrons, anti-protons, and neutrinos among others) which travel for very long distances before reaching the detectors. The modelling of their spectra contains some uncertainties which are often neglected in the relevant analyses. We discuss the sources of these uncertainties and estimate their impact on photon energy spectra for benchmark DM scenarios with $m_chi in [10, 1000],$GeV. Instructions for how to retrieve complete tables from Zenodo are also provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا