ﻻ يوجد ملخص باللغة العربية
In the analysis of experimental data on $p p$ (or $bar p p$) elastic differential cross section it is customary to define an average forward slope $b$ in the form $exp{(-b|t|)}$, where $t$ is the momentum transfer. Taking as working example the results of experiments at Tevatron and SPS, we will show with the help of the impact picture approach, that this simplifying assumption hides interesting information on the complex non-flip scattering amplitude, and that the slope $b$ is not a constant. We investigate the variation of this slope parameter, including a model-independent way to extract this information from an accurate measurement of the elastic differential cross section. An extension of our results to the LHC energy domain is presented in view of future experiments.
We calculate various azimuthal angle distributions for three jets produced in the forward rapidity region with transverse momenta $p_T>20,mathrm{GeV}$ in proton-proton (p-p) and proton-lead (p-Pb) collisions at center of mass energy $5.02,,mathrm{TeV
Provided the enhancement in the $p bar{p}$ spectrum in radiative decay $J/psi to gamma p bar{p}$ observed by the BES collaboration is due to an existence of a $p bar{p}$ molecular state, we calculate its binding energy and lifetime in the linear $sig
Exact analytical forms of solutions for Dispersion Relations for Amplitudes and Dispersion Relations for Slopes are applied in the analysis of pp and $rm {p bar p}$ scattering data in the forward range at energies below $sqrt(s)approx 30 GeV$. As inp
The first observation of the decay $eta_{c}(2S) to p bar p$ is reported using proton-proton collision data corresponding to an integrated luminosity of $3.0rm , fb^{-1}$ recorded by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The $
In this work, the triangle singularity mechanism is investigated in the $psi(2S) to p bar{p} eta / p bar{p} pi^0$ process. The triangle loop composed by $J/psi$, $eta$ and $p$ has a singularity in the physical kinematic range for the $psi(2S) to p ba