ﻻ يوجد ملخص باللغة العربية
The number and the location of the monopoles observed on the lattice in QCD configurations happens to depend strongly on the choice of the gauge used to expose them, in contrast to the physical expectation that monopoles be gauge invariant objects. It is proved by use of the non abelian Bianchi identities (NABI) that monopoles are indeed gauge invariant, but the method used to detect them depends, in a controllable way, on the choice of the abelian projection. Numerical checks are presented.
The long standing problem is solved why the number and the location of monopoles observed in Lattice configurations depend on the choice of the gauge used to detect them, in contrast to the obvious requirement that monopoles, as physical objects, mus
The number and the location of monopoles in Lattice configurations depend on the choice of the gauge, in contrast to the obvious requirement that monopoles, as physical objects, have a gauge-invariant status. It is proved, starting from non-abelian
The properties of the thermal Abelian color-magnetic monopoles in the maximally Abelian gauge are studied in the vicinity of the confinement-deconfinement phase transition in the lattice $SU(3)$ gluodynamics and lattice QCD. We compute the density an
We investigate SU(2) lattice gauge theory in four dimensions in the maximally abelian projection. Studying the effects on different lattice sizes we show that the deconfinement transition of the fields and the percolation transition of the monopole c
We study monopoles and corresponding t Hooft tensor in QCD with a generic compact gauge group. This issue is relevant to the understanding of color confinement in terms of dual symmetry.