ﻻ يوجد ملخص باللغة العربية
We study the optimal usage-based pricing problem in a resource-constrained network with one profit-maximizing service provider and multiple groups of surplus-maximizing users. With the assumption that the service provider knows the utility function of each user (thus complete information), we find that the complete price differentiation scheme can achieve a large revenue gain (e.g., 50%) compared to no price differentiation, when the total network resource is comparably limited and the high willingness to pay users are minorities. However, the complete price differentiation scheme may lead to a high implementational complexity. To trade off the revenue against the implementational complexity, we further study the partial price differentiation scheme, and design a polynomial-time algorithm that can compute the optimal partial differentiation prices. We also consider the incomplete information case where the service provider does not know which group each user belongs to. We show that it is still possible to realize price differentiation under this scenario, and provide the sufficient and necessary condition under which an incentive compatible differentiation scheme can achieve the same revenue as under complete information.
We consider the effects of network topology on the optimality of packet routing quantified by $gamma_c$, the rate of packet insertion beyond which congestion and queue growth occurs. The key result of this paper is to show that for any network, there
The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-
Providing connectivity from the sky is the new innovative trend in wireless communications. High and low altitude platforms, drones, aircrafts and airships are being considered as the candidates for deploying wireless communications complementing the
This letter considers a network where nodes share a wireless channel to work in turn as pulse radars for target detection and as transmitters for data exchange. Radar detection range and network throughput are studied using stochastic geometry tools.
Mobile entities with wireless links are able to form a mobile ad-hoc network. Such an infrastructureless network does not have to be administrated. However, self-organizing principles have to be applied to deal with upcoming problems, e.g. informatio