ترغب بنشر مسار تعليمي؟ اضغط هنا

Dense Molecular Gas Excitation at High Redshift: Detection of HCO+(J=4-3) Emission in the Cloverleaf Quasar

65   0   0.0 ( 0 )
 نشر من قبل Dominik Riechers
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of HCO+(J=4-3) emission in the Cloverleaf Quasar at z=2.56, using the IRAM Plateau de Bure Interferometer. HCO+ emission is a star formation indicator similar to HCN, tracing dense molecular hydrogen gas (n(H2) ~= 10^5 cm^-3) within star-forming molecular clouds. We derive a lensing-corrected HCO+(J=4-3) line luminosity of L(HCO+(4-3)) = (1.6+/-0.3) x 10^9 (mu_L/11)^-1 K km/s pc^2, which corresponds to only 48% of the HCO+(J=1=0) luminosity, and <~4% of the CO(J=3-2) luminosity. The HCO+ excitation thus is clearly subthermal in the J=4-3 transition. Modeling of the HCO+ line radiative transfer suggests that the HCO+ emission emerges from a region with physical properties comparable to that exhibiting the CO line emission, but 2x higher gas density. This suggests that both HCO+ and CO lines trace the warm, dense molecular gas where star formation actively takes place. The HCO+ lines have only ~2/3 the width of the CO lines, which may suggest that the densest gas is more spatially concentrated. In contrast to the z=3.91 quasar APM08279+5255, the dense gas excitation in the Cloverleaf is consistent with being purely collisional, rather than being enhanced by radiative processes. Thus, the physical properties of the dense gas component in the Cloverleaf are consistent with those in the nuclei of nearby starburst galaxies. This suggests that the conditions in the dense, star-forming gas in active galactic nucleus-starburst systems at early cosmic times like the Cloverleaf are primarily affected by the starburst itself, rather than the central active black hole.

قيم البحث

اقرأ أيضاً

We report the detection of HCO+(1-0) emission towards the Cloverleaf quasar (z=2.56) through observations with the Very Large Array. This is the first detection of ionized molecular gas emission at high redshift (z>2). HCO+ emission is a star formati on indicator similar to HCN, tracing dense molecular hydrogen gas (n(H_2) ~= 10^5 cm^{-3}) within star-forming molecular clouds. We derive a lensing-corrected HCO+ line luminosity of L(HCO+) = 3.5 x 10^9 K km/s pc^2. Combining our new results with CO and HCN measurements from the literature, we find a HCO+/CO luminosity ratio of 0.08 and a HCO+/HCN luminosity ratio of 0.8. These ratios fall within the scatter of the same relationships found for low-z star-forming galaxies. However, a HCO+/HCN luminosity ratio close to unity would not be expected for the Cloverleaf if the recently suggested relation between this ratio and the far-infrared luminosity were to hold. We conclude that a ratio between HCO+ and HCN luminosity close to 1 is likely due to the fact that the emission from both lines is optically thick and thermalized and emerges from dense regions of similar volumes. The CO, HCN and HCO+ luminosities suggest that the Cloverleaf is a composite AGN--starburst system, in agreement with the previous finding that about 20% of the total infrared luminosity in this system results from dust heated by star formation rather than heating by the AGN. We conclude that HCO+ is potentially a good tracer for dense molecular gas at high redshift.
We detect luminous emission from HCN, HCO+ and HNC 1--0 in the QSO ULIRG Mrk~231 with the IRAM Plateau de Bure Interferometer at 1.55 by 1.28 resolution. All three lines show broad line wings - which are particularly prominent for HCN. Velocities are found to be similar (750 km/s) to those found for CO 1-0. This is the first time bright HCN, HCO+ and HNC emission has been detected in a large-scale galactic outflow. We find that both the blue- and red-shifted line wings are spatially extended by at least 0.75 (700 pc) in a north-south direction. The line wings are brighter (relative to the line center intensity) in HCN than in CO 1-0 and line ratios suggest that the molecular outflow consists of dense (n>10E4 cmE-3) and clumpy gas with a high HCN abundance X(HCN)>10E-8. These properties are consistent with the molecular gas being compressed and fragmented by shocks in the outflow. Alternatively, HCN is instead pumped by mid-IR continuum, but we propose that this effect is not strong for the spatially extended outflowing gas. In addition, we find that the rotation of the main disk, in east-west direction, is also evident in the HCN, HCO+ and HNC line emission. An unexpectedly bright HC3N 10-9 line is detected inside the central 400 pc of Mrk231. This HC3N emission may emerge from a shielded, dust-enshrouded region within the inner 40-50 pc where the gas is heated to high temperatures (200 - 300 K) by the AGN.
New 12CO J=4-3 and 13CO J=3-2 observations of the N159 region in the Large Magellanic Cloud have been made. The 12CO J=4-3 distribution is separated into three clumps. These new measurements toward the three clumps are used in coupled calculations of molecular rotational excitation and line radiation transfer, along with other transitions of the 12CO as well as the isotope transitions of 13CO. The temperatures and densities are determined to be ~70-80K and ~3x10^3 cm-3 in N159W and N159E and ~30K and ~1.6x10^3 cm-3 in N159S. These results are compared with the star formation activity. The N159E clump is associated with embedded cluster(s) as observed at 24 micron and the derived high temperature is explained as due to the heating by these sources. The N159E clump is likely responsible for a dark lane in a large HII region by the dust extinction. The N159W clump is associated with embedded clusters mainly toward the eastern edge of the clump only. These clusters show offsets of 20-40 from the 12CO J=4-3 peak and are probably responsible for heating indicated by the derived high temperature. The N159W clump exhibits no sign of star formation toward the 12CO J=4-3 peak position and its western region. We suggest that the N159W peak represents a pre-star-cluster core of ~105M_sol which deserves further detailed studies. Note that recent star formation took place between N159W and N159E as indicated by several star clusters and HII regions, while the natal molecular gas toward the stars have already been dissipated by the ionization and stellar winds of the OB stars. The N159S clump shows little sign of star formation as is consistent with the lower temperature and somewhat lower density. The N159S clump is also a candidate for future star formation.
We report the detection of CN(N=3-2) emission towards the Cloverleaf quasar (z=2.56) based on observations with the IRAM Plateau de Bure Interferometer. This is the first clear detection of emission from this radical at high redshift. CN emission is a tracer of dense molecular hydrogen gas (n(H2) > 10^4 cm^{-3}) within star-forming molecular clouds, in particular in regions where the clouds are affected by UV radiation. The HCN/CN intensity ratio can be used as a diagnostic for the relative importance of photodissociation regions (PDRs) in a source, and as a sensitive probe of optical depth, the radiation field, and photochemical processes. We derive a lensing-corrected CN(N=3-2) line luminosity of L(CN(3-2) = (4.5 +/- 0.5) x 10^9 K km/s pc^2. The ratio between CN luminosity and far-infrared luminosity falls within the scatter of the same relationship found for low-z (ultra-) luminous infrared galaxies. Combining our new results with CO(J=3-2) and HCN(J=1-0) measurements from the literature and assuming thermal excitation for all transitions, we find a CO/CN luminosity ratio of 9.3 +/- 1.9 and a HCN/CN luminosity ratio of 0.95 +/- 0.15. However, we find that the CN(N=3-2) line is likely only subthermally excited, implying that those ratios may only provide upper limits for the intrinsic 1-0 line luminosity ratios. We conclude that, in combination with other molecular gas tracers like CO, HCN, and HCO+, CN is an important probe of the physical conditions and chemical composition of dense molecular environments at high redshift.
We have carried out 12CO(J =2-1) and 12CO(J =3-2) observations at spatial resolutions of 1.0-3.8 pc toward the entirety of loops 1 and 2 and part of loop 3 in the Galactic center with NANTEN2 and ASTE. These new results revealed detailed distribution s of the molecular gas and the line intensity ratio of the two transitions, R3-2/2-1. In the three loops, R3-2/2-1 is in a range from 0.1 to 2.5 with a peak at ~ 0.7 while that in the disk molecular gas is in a range from 0.1 to 1.2 with a peak at 0.4. This supports that the loops are more highly excited than the disk molecular gas. An LVG analysis of three transitions, 12CO J =3-2 and 2-1 and 13CO J =2-1, toward six positions in loops 1 and 2 shows density and temperature are in a range 102.2 - 104.7 cm-3 and 15-100 K or higher, respectively. Three regions extended by 50-100 pc in the loops tend to have higher excitation conditions as characterized by R3-2/2-1 greater than 1.2. The highest ratio of 2.5 is found in the most developed foot points between loops 1 and 2. This is interpreted that the foot points indicate strongly shocked conditions as inferred from their large linewidths of 50-100 km s-1, confirming the suggestion by Torii et al. (2010b). The other two regions outside the foot points suggest that the molecular gas is heated up by some additional heating mechanisms possibly including magnetic reconnection. A detailed analysis of four foot points have shown a U shape, an L shape or a mirrored-L shape in the b-v distribution. It is shown that a simple kinematical model which incorporates global rotation and expansion of the loops is able to explain these characteristic shapes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا