ترغب بنشر مسار تعليمي؟ اضغط هنا

External-cavity designs for phase-coupled laser diode arrays

140   0   0.0 ( 0 )
 نشر من قبل Gaelle Lucas-Leclin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe passive phase-locking architectures based on external-cavity setups to improve the brightness of diode laser bars. Volume Bragg gratings are used to stabilize the lase line. Numerical modelling and experimental results will be presented.



قيم البحث

اقرأ أيضاً

The design of a 671 nm diode laser with a mode-hop-free tuning range of 40 GHz is described. This long tuning range is achieved by simultaneously ramping the external cavity length with the laser injection current. The external cavity consists of a m icroscope cover slip mounted on piezoelectric actuators. In such a configuration the laser output pointing remains fixed, independent of its frequency. Using a diode with an output power of 5-7 mW, the laser linewidth was found to be smaller than 30 MHz. This cover slip cavity and feedforward laser current control system is simple, economical, robust, and easy to use for spectroscopy, as we demonstrate with lithium vapor and lithium atom beam experiments.
We present a versatile, inexpensive and simple optical phase lock for applications in atomic physics experiments. Thanks to all-digital phase detection and implementation of beat frequency pre-scaling, the apparatus requires no microwave-range refere nce input, and permits phase locking at frequency differences ranging from sub-MHz to 7 GHz (and with minor extension, to 12 GHz). The locking range thus covers ground state hyperfine splittings of all alkali metals, which makes this system a universal tool for many experiments on coherent interaction between light and atoms.
We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, $alpha$. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through $alpha$ in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as $alpha$ varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to $alpha$.
Two extended cavity laser diodes are phase-locked, thanks to an intra-cavity electro-optical modulator. The phase-locked loop bandwidth is on the order of 10 MHz, which is about twice larger than when the feedback correction is applied on the laser c urrent. The phase noise reaches -120 dBrad$^2$/Hz at 10 kHz. This new scheme reduces the residual laser phase noise, which constitutes one of the dominant contributions in the sensitivity limit of atom interferometers using two-photon transitions.
A novel method for converting an array of out-of-phase lasers into one of in-phase lasers that can be tightly focused is presented. The method exploits second harmonic generation and can be adapted for different laser arrays geometries. Experimental and calculated results, presented for negatively coupled lasers formed in a square, honeycomb, and triangular geometries are in good agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا