ﻻ يوجد ملخص باللغة العربية
The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N_eff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N_eff from primordial neutrino--antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta_nu= eta_{nu_e}+eta_{nu_mu}+eta_{nu_tau} and the initial electron neutrino asymmetry eta_{nu_e}^in, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu_e -bar{nu}_e asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2H/H density ratio and 4He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2H/H abundance plays a relevant role in constraining the allowed regions in the eta_nu -eta_{nu_e}^in plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N_eff as a function of the mixing parameter theta_13, and point out the upper bound N_eff < 3.4. Comparing these results with the forthcoming measurement of N_eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.
We reexamine big bang nucleosynthesis with large-scale baryon density inhomogeneities when the length scale of the density fluctuations exceeds the neutron diffusion length ($sim 10^7-10^8$ cm at BBN), and the amplitude of the fluctuations is suffici
We compute radiative corrections to nuclear reaction rates that determine the outcome of the Big-Bang Nucleosynthesis (BBN). Any nuclear reaction producing a photon with an energy above $2m_e$ must be supplemented by the corresponding reaction where
We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit co
A host of dark energy models and non-standard cosmologies predict an enhanced Hubble rate in the early Universe: perfectly viable models, which satisfy Big Bang Nucleosynthesis (BBN), cosmic microwave background and general relativity tests, may neve
Standard big bang nucleosynthesis (SBBN) has been remarkably successful, and it may well be the correct and sufficient account of what happened. However, interest in variations from the standard picture come from two sources: First, big bang nucleosy